defmodule Axon do @moduledoc """ A high-level interface for creating neural network models. Axon is built entirely on top of Nx numerical definitions, so every neural network can be JIT or AOT compiled using any Nx compiler, or even transformed into high-level neural network formats like TensorFlow Lite and [ONNX](https://github.com/elixir-nx/axon_onnx). For a more in-depth overview of Axon, refer to the [Guides](guides.html). ## Model Creation All Axon models start with an input layer, optionally specifying the expected shape of the input data: input = Axon.input("input", shape: {nil, 784}) Notice you can specify some dimensions as `nil`, indicating that the dimension size will be filled in at model runtime. You can then compose inputs with other layers: model = input |> Axon.dense(128, activation: :relu) |> Axon.batch_norm() |> Axon.dropout(rate: 0.8) |> Axon.dense(64) |> Axon.tanh() |> Axon.dense(10) |> Axon.activation(:softmax) You can inspect the model for a nice summary: IO.inspect(model) #Axon< inputs: %{"input" => {nil, 784}} outputs: "softmax_0" nodes: 9 > Or use the `Axon.Display` module to see more in-depth summaries: Axon.Display.as_table(model, Nx.template({1, 784}, :f32)) |> IO.puts +----------------------------------------------------------------------------------------------------------------+ | Model | +=======================================+=============+==============+===================+=======================+ | Layer | Input Shape | Output Shape | Options | Parameters | +=======================================+=============+==============+===================+=======================+ | input ( input ) | [] | {1, 784} | shape: {nil, 784} | | | | | | optional: false | | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | dense_0 ( dense["input"] ) | [{1, 784}] | {1, 128} | | kernel: f32[784][128] | | | | | | bias: f32[128] | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | relu_0 ( relu["dense_0"] ) | [{1, 128}] | {1, 128} | | | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | batch_norm_0 ( batch_norm["relu_0"] ) | [{1, 128}] | {1, 128} | epsilon: 1.0e-5 | gamma: f32[128] | | | | | channel_index: 1 | beta: f32[128] | | | | | momentum: 0.1 | mean: f32[128] | | | | | | var: f32[128] | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | dropout_0 ( dropout["batch_norm_0"] ) | [{1, 128}] | {1, 128} | rate: 0.8 | | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | dense_1 ( dense["dropout_0"] ) | [{1, 128}] | {1, 64} | | kernel: f32[128][64] | | | | | | bias: f32[64] | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | tanh_0 ( tanh["dense_1"] ) | [{1, 64}] | {1, 64} | | | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | dense_2 ( dense["tanh_0"] ) | [{1, 64}] | {1, 10} | | kernel: f32[64][10] | | | | | | bias: f32[10] | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ | softmax_0 ( softmax["dense_2"] ) | [{1, 10}] | {1, 10} | | | +---------------------------------------+-------------+--------------+-------------------+-----------------------+ ### Multiple Inputs Creating a model with multiple inputs is as easy as declaring an additional input in your Axon graph. Every input layer present in the final Axon graph will be required to be passed as input at the time of model execution. inp1 = Axon.input("input_0", shape: {nil, 1}) inp2 = Axon.input("input_1", shape: {nil, 1}) # Both inputs will be used model1 = Axon.add(inp1, inp2) # Only inp2 will be used model2 = Axon.add(inp2, inp2) Axon graphs are immutable, which means composing and manipulating an Axon graph creates an entirely new graph. Additionally, layer names are lazily generated at model execution time. To avoid non-deterministic input orderings and names, Axon requires each input to have a unique binary identifier. You can then reference inputs by name when passing to models at execution time: inp1 = Axon.input("input_0", shape: {nil, 1}) inp2 = Axon.input("input_1", shape: {nil, 1}) model1 = Axon.add(inp1, inp2) {init_fn, predict_fn} = Axon.build(model1) params1 = init_fn.(Nx.template({1, 1}, {:f, 32}), %{}) # Inputs are referenced by name predict_fn.(params1, %{"input_0" => x, "input_1" => y}) ### Multiple Outputs Nx offers robust [container](https://hexdocs.pm/nx/Nx.Container.html) support which is extended to Axon. Axon allows you to wrap any valid Nx container in a layer. Containers are most commonly used to structure outputs: inp1 = Axon.input("input_0", shape: {nil, 1}) inp2 = Axon.input("input_1", shape: {nil, 1}) model = Axon.container(%{foo: inp1, bar: inp2}) Containers can be arbitrarily nested: inp1 = Axon.input("input_0", shape: {nil, 1}) inp2 = Axon.input("input_1", shape: {nil, 1}) model = Axon.container({%{foo: {inp1, %{bar: inp2}}}}) You can even use custom structs which implement the container protocol: inp1 = Axon.input("input_0", shape: {nil, 1}) inp2 = Axon.input("input_1", shape: {nil, 1}) model = Axon.container(%MyStruct{foo: inp1, bar: inp2}) ### Custom Layers If you find that Axon's built-in layers are insufficient for your needs, you can create your own using the custom layer API. All of Axon's built-in layers (aside from special ones such as `input`, `constant`, and `container`) make use of this same API. Axon layers are really just placeholders for Nx computations with trainable parameters and possibly state. To define a custom layer, you just need to define a `defn` implementation: defn my_layer(x, weight, _opts \\\\ []) do Nx.atan2(x, weight) end Notice the only stipulation is that your custom layer implementation must accept at least 1 input and a list of options. At execution time, every layer will be passed a `:mode` option which can be used to control behavior at training and inference time. Inputs to your custom layer can be either Axon graph inputs or trainable parameters. You can pass Axon graph inputs as-is to a custom layer. To declare trainable parameters, use `Axon.param/3`: weight = Axon.param("weight", param_shape) To create a custom layer, you "wrap" your implementation and inputs into a layer using `Axon.layer`. You'll notice the API mirrors Elixir's `apply`: def atan2_layer(%Axon{} = input) do weight = Axon.param("weight", param_shape) Axon.layer(&my_layer/3, [input, weight]) end ## Model Execution Under the hood, Axon models are represented as Elixir structs. You can initialize and apply models by building or compiling them with `Axon.build/2` or `Axon.compile/4` and then calling the produced initialization and predict functions: {init_fn, predict_fn} = Axon.build(model) params = init_fn.(Nx.template({1, 1}, {:f, 32}), %{}) predict_fn.(params, inputs) You may either set the default JIT compiler or backend globally, or pass a specific compiler to `Axon.build/2`: EXLA.set_as_nx_default([:tpu, :cuda, :rocm, :host]) {init_fn, predict_fn} = Axon.build(model, compiler: EXLA, mode: :train) params = init_fn.(Nx.template({1, 1}, {:f, 32}), %{}) predict_fn.(params, inputs) `predict_fn` by default runs in inference mode, which performs certain optimizations and removes layers such as dropout layers. If constructing a training step using `Axon.predict/4` or `Axon.build/2`, be sure to specify `mode: :train`. ## Model Training Combining the Axon model creation API with the optimization and training APIs, you can create and train neural networks with ease: model = Axon.input("input_0", shape: {nil, 784}) |> Axon.dense(128, activation: :relu) |> Axon.layer_norm() |> Axon.dropout() |> Axon.dense(10, activation: :softmax) IO.inspect model model_state = model |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adamw(learning_rate: 0.005)) |> Axon.Loop.run(train_data, epochs: 10, compiler: EXLA) See `Polaris.Updates` and `Axon.Loop` for a more in-depth treatment of model optimization and model training. ## Using with `Nx.Serving` When deploying an `Axon` model to production, you usually want to batch multiple prediction requests and run the inference for all of them at once. Conveniently, `Nx` already has an abstraction for this task in the form of `Nx.Serving`. Here's how you could define a serving for an `Axon` model: def build_serving() do # Configuration batch_size = 4 defn_options = [compiler: EXLA] Nx.Serving.new( # This function runs on the serving startup fn -> # Build the Axon model and load params (usually from file) model = build_model() params = load_params() # Build the prediction defn function {_init_fun, predict_fun} = Axon.build(model) inputs_template = %{"pixel_values" => Nx.template({batch_size, 224, 224, 3}, :f32)} template_args = [Nx.to_template(params), inputs_template] # Compile the prediction function upfront for the configured batch_size predict_fun = Nx.Defn.compile(predict_fun, template_args, defn_options) # The returned function is called for every accumulated batch fn inputs -> inputs = Nx.Batch.pad(inputs, batch_size - inputs.size) predict_fun.(params, inputs) end end, batch_size: batch_size ) end Then you would start the serving server as part of your application's supervision tree: children = [ ..., {Nx.Serving, serving: build_serving(), name: MyApp.Serving, batch_timeout: 100} ] With that in place, you can now ask serving for predictions all across your application (controllers, live views, async jobs, etc.). Having a tensor input you would do: inputs = %{"pixel_values" => ...} batch = Nx.Batch.concatenate([inputs]) result = Nx.Serving.batched_run(MyApp.Serving, batch) Usually you also want to do pre/post-processing of the model input/output. You could make those preparations directly before/after `Nx.Serving.batched_run/2`, however you can also make use of `Nx.Serving.client_preprocessing/2` and `Nx.Serving.client_postprocessing/2` to encapsulate that logic as part of the serving. """ alias __MODULE__, as: Axon alias Axon.Parameter import Axon.Shared require Logger @type t :: %__MODULE__{} defstruct [ :nodes, :output ] @doc """ Custom Axon layer with given inputs. Inputs may be other Axon layers or trainable parameters created with `Axon.param`. At inference time, `op` will be applied with inputs in specified order and an additional `opts` parameter which specifies inference options. All options passed to layer are forwarded to inference function except: * `:name` - layer name. * `:op_name` - layer operation for inspection and building parameter map. * `:mode` - if the layer should run only on `:inference` or `:train`. Defaults to `:both` * `:global_options` - a list of global option names that this layer supports. Global options passed to `build/2` will be forwarded to the layer, as long as they are declared Note this means your layer should not use these as input options, as they will always be dropped during inference compilation. Axon's compiler will additionally forward the following options to every layer at inference time: * `:mode` - `:inference` or `:train`. To control layer behavior based on inference or train time. `op` is a function of the form: fun = fn input, weight, bias, _opts -> input * weight + bias end """ @doc type: :special def layer(op, inputs, opts \\ []) when (is_atom(op) or is_function(op)) and is_list(inputs) do {inputs, params, args, updated_nodes} = split_inputs(op, inputs) inputs = Enum.reverse(inputs) params = Enum.reverse(params) args = Enum.reverse(args) {mode, opts} = Keyword.pop(opts, :mode, :both) {name, opts} = Keyword.pop(opts, :name) {op_name, opts} = Keyword.pop(opts, :op_name, :custom) {global_options, opts} = Keyword.pop(opts, :global_options, []) {meta, opts} = Keyword.pop(opts, :meta, %{}) name = name(op_name, name) id = System.unique_integer([:positive, :monotonic]) axon_node = make_node(id, op, name, op_name, mode, inputs, params, args, meta, opts, global_options) %Axon{output: id, nodes: Map.put(updated_nodes, id, axon_node)} end defp make_node( id, op, name, op_name, mode, inputs, params, args, meta, layer_opts, global_options ) do {:current_stacktrace, [_process_info, _axon_layer | stacktrace]} = Process.info(self(), :current_stacktrace) %Axon.Node{ id: id, mode: mode, name: name, parent: inputs, parameters: params, args: args, op: op, policy: Axon.MixedPrecision.create_policy(), hooks: [], opts: layer_opts, global_options: global_options, op_name: op_name, meta: meta, stacktrace: stacktrace } end defp split_inputs(_op, inputs) do Enum.reduce(inputs, {[], [], [], %{}}, fn %Axon{output: layer_input, nodes: nodes}, {layers, params, args, cache} -> {[layer_input | layers], params, [:layer | args], Map.merge(nodes, cache)} %Parameter{} = param, {layers, params, args, cache} -> {layers, [param | params], [:parameter | args], cache} invalid, _ -> raise ArgumentError, "invalid input given to layer: #{inspect(invalid)}" end) end @doc """ Trainable Axon parameter used to create custom layers. Parameters are specified in usages of `Axon.layer` and will be automatically initialized and used in subsequent applications of Axon models. You must specify a parameter "template" which can be a static template tensor or a function which takes model input templates and returns a template. It's most common to use functions because most parameters' shapes rely on input shape information. """ @doc type: :special def parameter(name, template, opts \\ []) def parameter(name, %Nx.Tensor{} = template, opts) do opts = Keyword.validate!(opts, initializer: :glorot_uniform, kind: :parameter) initializer = validate_initializer!(opts[:initializer]) kind = opts[:kind] || :parameter template = Nx.to_template(template) %Axon.Parameter{ name: name, template: template, initializer: initializer, kind: kind, # Legacy type: Nx.type(template), shape: Nx.shape(template) } end def parameter(name, function, opts) when is_function(function) do opts = Keyword.validate!(opts, initializer: :glorot_uniform, kind: :parameter) initializer = validate_initializer!(opts[:initializer]) kind = opts[:kind] || :parameter %Axon.Parameter{ name: name, template: function, initializer: initializer, kind: kind } end @doc """ Trainable Axon parameter used to create custom layers. Parameters are specified in usages of `Axon.layer` and will be automatically initialized and used in subsequent applications of Axon models. You may specify the parameter shape as either a static shape or as function of the inputs to the given layer. If you specify the parameter shape as a function, it will be given the ## Options * `:initializer` - parameter initializer. Defaults to `:glorot_uniform`. """ @doc type: :special def param(name, shape, opts \\ []) def param(name, shape, opts) when is_binary(name) and is_tuple(shape) do opts = Keyword.validate!(opts, initializer: :glorot_uniform, type: {:f, 32}, kind: :parameter) {type, opts} = Keyword.pop(opts, :type, {:f, 32}) template = Nx.template(shape, type) parameter(name, template, opts) end def param(name, shape, opts) when is_binary(name) and is_function(shape) do opts = Keyword.validate!(opts, initializer: :glorot_uniform, type: {:f, 32}, kind: :parameter) {type, opts} = Keyword.pop(opts, :type, {:f, 32}) {:arity, arity} = Function.info(shape, :arity) template = shape_fun(arity, fn templates -> shapes = Enum.map(List.wrap(templates), &Nx.shape/1) out_shape = apply(shape, shapes) Nx.template(out_shape, type) end) parameter(name, template, opts) end for i <- 0..128 do args = Macro.generate_arguments(i, __MODULE__) defp shape_fun(unquote(i), callback) do fn unquote_splicing(args) -> callback.(unquote(args)) end end end @doc """ Adds an input layer to the network. Input layers specify a model's inputs. Input layers are always the root layers of the neural network. You must specify the input layers name, which will be used to uniquely identify it in the case of multiple inputs. ## Options * `:shape` - the expected input shape, use `nil` for dimensions of a dynamic size. * `:optional` - if `true`, the input may be omitted when using the model. This needs to be handled in one of the subsequent layers. See `optional/2` for more details. """ @doc type: :special def input(name, opts \\ []) def input(name, opts) when is_binary(name) and is_list(opts) do opts = Keyword.validate!(opts, [:shape, :meta, optional: false]) optional = opts[:optional] meta = opts[:meta] input_shape = opts[:shape] output_shape = input_shape && Axon.Shape.input(input_shape) layer(:input, [], name: name, shape: output_shape, meta: meta, op_name: :input, optional: optional ) end @doc """ Wraps an Axon model in an optional node. By default, when an optional input is missing, all subsequent layers are nullified. For example, consider this model: values = Axon.input("values") mask = Axon.input("mask", optional: true) model = values |> Axon.dense(10) |> Axon.multiply(mask) |> Axon.dense(1) |> Axon.sigmoid() In case the mask is not provided, the input node will resolve to `%Axon.None{}` and so will all the layers that depend on it. By using `optional/2` a layer may opt-in to receive `%Axon.None{}`. To fix our example, we could define a custom layer to apply the mask only when present def apply_optional_mask(%Axon{} = x, %Axon{} = mask) do Axon.layer( fn x, mask, _opts -> case mask do %Axon.None{} -> x mask -> Nx.multiply(x, mask) end end, [x, Axon.optional(mask)] ) end # ... model = values |> Axon.dense(10) |> apply_optional_mask(mask) |> Axon.dense(1) |> Axon.sigmoid() ## Options * `:name` - layer name. """ @doc type: :special def optional(%Axon{} = x, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta]) layer(:optional, [x], name: opts[:name], meta: opts[:meta], op_name: :optional) end @doc """ Implements an or else (e.g. an Elixir ||) """ @doc type: :special def or_else(%Axon{} = a, %Axon{} = b, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta]) Axon.layer( fn x, y, _ -> case x do %Axon.None{} -> y _ -> x end end, [a, b], op_name: :or_else, name: opts[:name], meta: opts[:meta] ) end @doc """ Adds a constant layer to the network. Constant layers encapsulate Nx tensors in an Axon layer for ease of use with other Axon layers. They can be used interchangeably with other Axon layers: inp = Axon.input("input", shape: {nil, 32}) my_constant = Axon.constant(Nx.iota({1, 32})) model = Axon.add(inp, my_constant) Constant layers will be cast according to the mixed precision policy. If it's important for your constant to retain it's type during the computation, you will need to set the mixed precision policy to ignore constant layers. ## Options * `:name` - layer name. """ def constant(tensor, opts \\ []) @doc type: :special def constant(%Nx.Tensor{} = tensor, opts) do opts = Keyword.validate!(opts, [:name, :meta]) layer(:constant, [], name: opts[:name], meta: opts[:meta], value: tensor, op_name: :constant) end def constant(number, opts) when is_number(number) do opts = Keyword.validate!(opts, [:name, :meta]) layer(:constant, [], name: opts[:name], meta: opts[:meta], value: Nx.tensor(number), op_name: :constant ) end def constant(value, _) do raise ArgumentError, "value passed to constant must be an Nx tensor" <> " but got #{inspect(value)}, if you are passing" <> " a number, wrap it with a call to Nx.tensor/2" end @doc """ Adds a container layer to the network. In certain cases you may want your model to have multiple outputs. In order to make this work, you must "join" the outputs into an Axon layer using this function for use in initialization and inference later on. The given container can be any valid Axon Nx container. ## Options * `:name` - layer name. ## Examples iex> inp1 = Axon.input("input_0", shape: {nil, 1}) iex> inp2 = Axon.input("input_1", shape: {nil, 2}) iex> model = Axon.container(%{a: inp1, b: inp2}) iex> %{a: a, b: b} = Axon.predict(model, Axon.ModelState.empty(), %{ ...> "input_0" => Nx.tensor([[1.0]]), ...> "input_1" => Nx.tensor([[1.0, 2.0]]) ...> }) iex> a #Nx.Tensor< f32[1][1] [ [1.0] ] > iex> b #Nx.Tensor< f32[1][2] [ [1.0, 2.0] ] > """ @doc type: :special def container(container, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta]) {structure_fn, nodes} = destructure(container) layer(structure_fn, nodes, name: opts[:name], meta: opts[:meta], op_name: :container) end defp destructure(container) do {structure, {nodes, _}} = recur_destructure(container, {[], 0}) fun = restructure(length(nodes) + 1, structure) {fun, Enum.reverse(nodes)} end defp recur_destructure(container, acc) do Nx.Container.traverse(container, acc, fn value, {leaves, idx} -> case value do %Axon{} = leaf -> {idx, {[leaf | leaves], idx + 1}} container -> recur_destructure(container, {leaves, idx}) end end) end for i <- 0..128 do args = Macro.generate_arguments(i, __MODULE__) defp restructure(unquote(i), structure) do fn unquote_splicing(args) -> args_tuple = {unquote_splicing(args)} {container, :ok} = recur_restructure(structure, args_tuple) container end end end defp recur_restructure(structure, args_tuple) do Nx.Container.traverse(structure, :ok, fn value, :ok -> case value do idx when is_integer(idx) -> {elem(args_tuple, idx), :ok} container -> recur_restructure(container, args_tuple) end end) end @doc """ Returns a function which represents a self-contained re-usable block of operations in a neural network. All parameters in the block are shared between every usage of the block. This returns an arity-1 function which accepts a list of inputs which are forwarded to `fun`. This is most often used in situations where you wish to re-use parameters in a block: reused_dense = Axon.block(&Axon.dense(&1, 32)) Everytime `reused_dense` is invoked, it re-uses the same parameters: input = Axon.input("features") # unique parameters x1 = Axon.dense(input, 32) # unique parameters x2 = reused_dense.(x1) # parameters shared x3 = reused_dense.(x2) Subgraphs in blocks can be arbitrarily complex: reused_block = Axon.block(fn x -> x |> Axon.dense(32) |> Axon.dense(64) |> Axon.dense(32) end) Blocks can also have multiple inputs, you can invoke a block with multiple inputs by passing a list of arguments: reused_block = Axon.block(fn x, y, z -> x = Axon.dense(x, 32) y = Axon.dense(y, 32) z = Axon.dense(z, 32) Axon.add([x, y, z]) end) # invoke with a list reused_block.([x, y, z]) Blocks prefix subgraph parameters with their name and a dot. As with other Axon layers, if a name is not explicitly provided, one will be dynamically generated. """ @doc type: :special def block(fun, opts \\ []) when is_function(fun) do {:arity, arity} = Function.info(fun, :arity) opts = Keyword.validate!(opts, [:name, :meta]) block_id = System.unique_integer([:positive, :monotonic]) block_fun(arity, fn inputs -> layer(:block, List.wrap(inputs), op_name: :block, name: opts[:name], meta: opts[:meta], block_fun: fun, block_id: block_id ) end) end for i <- 0..128 do args = Macro.generate_arguments(i, __MODULE__) defp block_fun(unquote(i), callback) do fn unquote_splicing(args) -> callback.(unquote(args)) end end end @doc """ Adds a dense layer to the network. The dense layer implements: output = activation(dot(input, kernel) + bias) where `activation` is given by the `:activation` option and both `kernel` and `bias` are layer parameters. `units` specifies the number of output units. Compiles to `Axon.Layers.dense/4`. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros`. * `:activation` - element-wise activation function. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true`. """ @doc type: :linear def dense(%Axon{} = x, units, opts \\ []) when is_integer(units) and units > 0 do opts = Keyword.validate!(opts, [ :name, :activation, :meta, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true ]) meta = opts[:meta] || %{} |> Map.put(:units, units) |> Map.put(:use_bias, opts[:use_bias]) kernel_shape = &Axon.Shape.dense_kernel(&1, units) bias_shape = &Axon.Shape.dense_bias(&1, units) kernel = param("kernel", kernel_shape, initializer: opts[:kernel_initializer]) {inputs, op} = if opts[:use_bias] do bias = param("bias", bias_shape, initializer: opts[:bias_initializer]) {[x, kernel, bias], :dense} else {[x, kernel], :dense} end node = layer(op, inputs, name: opts[:name], meta: meta, op_name: :dense) if activation = opts[:activation] do activation(node, activation) else node end end @doc """ Adds a bilinear layer to the network. The bilinear layer implements: output = activation(dot(dot(input1, kernel), input2) + bias) where `activation` is given by the `:activation` option and both `kernel` and `bias` are layer parameters. `units` specifies the number of output units. All dimensions but the last of `input1` and `input2` must match. The batch sizes of both inputs must also match or at least one must be `nil`. Inferred output batch size coerces to the strictest input batch size. Compiles to `Axon.Layers.bilinear/5`. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros`. * `:activation` - element-wise activation function. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true`. """ @doc type: :linear def bilinear( %Axon{} = input1, %Axon{} = input2, units, opts \\ [] ) when is_integer(units) and units > 0 do opts = Keyword.validate!(opts, [ :name, :activation, :meta, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true ]) kernel_shape = &Axon.Shape.bilinear_kernel(&1, &2, units) bias_shape = &Axon.Shape.bilinear_bias(&1, &2, units) kernel = param("kernel", kernel_shape, initializer: opts[:kernel_initializer]) {inputs, op} = if opts[:use_bias] do bias = param("bias", bias_shape, initializer: opts[:bias_initializer]) {[input1, input2, kernel, bias], :bilinear} else {[input1, input2, kernel], :bilinear} end node = layer(op, inputs, name: opts[:name], meta: opts[:meta], op_name: :bilinear) if activation = opts[:activation] do activation(node, activation) else node end end @doc """ Adds a convolution layer to the network. The convolution layer implements a general dimensional convolutional layer - which convolves a kernel over the input to produce an output. Compiles to `Axon.Layers.conv/4`. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros` * `:activation` - element-wise activation function. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true` * `:kernel_size` - size of the kernel spatial dimensions. Defaults to `1`. * `:strides` - stride during convolution. Defaults to `1`. * `:padding` - padding to the spatial dimensions of the input. Defaults to `:valid`. * `:input_dilation` - dilation to apply to input. Defaults to `1`. * `:kernel_dilation` - dilation to apply to kernel. Defaults to `1`. * `:feature_group_size` - feature group size for convolution. Defaults to `1`. * `:channels` - channels location. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :convolution def conv(%Axon{} = x, units, opts \\ []) when is_integer(units) and units > 0 do opts = Keyword.validate!(opts, [ :name, :activation, :meta, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true, kernel_size: 1, strides: 1, padding: :valid, input_dilation: 1, kernel_dilation: 1, channels: :last, feature_group_size: 1 ]) kernel_size = opts[:kernel_size] strides = opts[:strides] padding = opts[:padding] input_dilation = opts[:input_dilation] kernel_dilation = opts[:kernel_dilation] channels = opts[:channels] feature_group_size = opts[:feature_group_size] kernel_shape = &Axon.Shape.conv_kernel(&1, units, kernel_size, channels, feature_group_size) bias_shape = &Axon.Shape.conv_bias(&1, units, kernel_size, channels, feature_group_size) kernel = param("kernel", kernel_shape, initializer: opts[:kernel_initializer]) {inputs, op} = if opts[:use_bias] do bias = param("bias", bias_shape, initializer: opts[:bias_initializer]) {[x, kernel, bias], :conv} else {[x, kernel], :conv} end node = layer(op, inputs, name: opts[:name], meta: opts[:meta], strides: strides, padding: padding, input_dilation: input_dilation, kernel_dilation: kernel_dilation, feature_group_size: feature_group_size, channels: channels, op_name: :conv ) if activation = opts[:activation] do activation(node, activation) else node end end @doc """ Adds a transposed convolution layer to the network. The transposed convolution layer is sometimes referred to as a fractionally strided convolution or (incorrectly) as a deconvolution. Compiles to `Axon.Layers.conv_transpose/4`. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros` * `:activation` - element-wise activation function. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true` * `:kernel_size` - size of the kernel spatial dimensions. Defaults to `1`. * `:strides` - stride during convolution. Defaults to `1`. * `:padding` - padding to the spatial dimensions of the input. Defaults to `:valid`. * `:kernel_dilation` - dilation to apply to kernel. Defaults to `1`. * `:channels` - channels location. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :convolution def conv_transpose(%Axon{} = x, units, opts \\ []) do opts = Keyword.validate!(opts, [ :name, :activation, :meta, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true, kernel_size: 1, strides: 1, padding: :valid, kernel_dilation: 1, channels: :last ]) kernel_size = opts[:kernel_size] strides = opts[:strides] padding = opts[:padding] kernel_dilation = opts[:kernel_dilation] channels = opts[:channels] kernel_shape = &Axon.Shape.conv_kernel(&1, units, kernel_size, channels, 1) bias_shape = &Axon.Shape.conv_bias(&1, units, kernel_size, channels, 1) kernel = param("kernel", kernel_shape, initializer: opts[:kernel_initializer]) {inputs, op} = if opts[:use_bias] do bias = param("bias", bias_shape, initializer: opts[:bias_initializer]) {[x, kernel, bias], :conv_transpose} else {[x, kernel], :conv_transpose} end node = layer(op, inputs, name: opts[:name], meta: opts[:meta], strides: strides, padding: padding, kernel_dilation: kernel_dilation, channels: channels, op_name: :conv_transpose ) if activation = opts[:activation] do activation(node, activation) else node end end @doc """ Adds a depthwise convolution layer to the network. The depthwise convolution layer implements a general dimensional depthwise convolution - which is a convolution where the feature group size is equal to the number of input channels. Channel multiplier grows the input channels by the given factor. An input factor of 1 means the output channels are the same as the input channels. Compiles to `Axon.Layers.depthwise_conv/4`. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros` * `:activation` - element-wise activation function. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true` * `:kernel_size` - size of the kernel spatial dimensions. Defaults to `1`. * `:strides` - stride during convolution. Defaults to `1`. * `:padding` - padding to the spatial dimensions of the input. Defaults to `:valid`. * `:input_dilation` - dilation to apply to input. Defaults to `1`. * `:kernel_dilation` - dilation to apply to kernel. Defaults to `1`. * `:channels` - channels location. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :convolution def depthwise_conv(%Axon{} = x, channel_multiplier, opts \\ []) when is_integer(channel_multiplier) and channel_multiplier >= 1 do opts = Keyword.validate!(opts, [ :name, :activation, :meta, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true, kernel_size: 1, strides: 1, padding: :valid, input_dilation: 1, kernel_dilation: 1, channels: :last ]) kernel_size = opts[:kernel_size] strides = opts[:strides] padding = opts[:padding] input_dilation = opts[:input_dilation] kernel_dilation = opts[:kernel_dilation] channels = opts[:channels] kernel_shape = &Axon.Shape.depthwise_conv_kernel(&1, channel_multiplier, kernel_size, channels) bias_shape = &Axon.Shape.depthwise_conv_bias(&1, channel_multiplier, kernel_size, channels) kernel = param("kernel", kernel_shape, initializer: opts[:kernel_initializer]) {inputs, op} = if opts[:use_bias] do bias = param("bias", bias_shape, initializer: opts[:bias_initializer]) {[x, kernel, bias], :depthwise_conv} else {[x, kernel], :depthwise_conv} end node = layer(op, inputs, name: opts[:name], meta: opts[:meta], strides: strides, padding: padding, input_dilation: input_dilation, kernel_dilation: kernel_dilation, channels: channels, op_name: :depthwise_conv ) if activation = opts[:activation] do activation(node, activation) else node end end @doc """ Adds a depthwise separable 2-dimensional convolution to the network. Depthwise separable convolutions break the kernel into kernels for each dimension of the input and perform a depthwise conv over the input with each kernel. Compiles to `Axon.Layers.separable_conv2d/6`. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros` * `:activation` - element-wise activation function. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true` * `:kernel_size` - size of the kernel spatial dimensions. Defaults to `1`. * `:strides` - stride during convolution. Defaults to `1`. * `:padding` - padding to the spatial dimensions of the input. Defaults to `:valid`. * `:input_dilation` - dilation to apply to input. Defaults to `1`. * `:kernel_dilation` - dilation to apply to kernel. Defaults to `1`. * `:channels` - channels location. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :convolution def separable_conv2d(%Axon{} = x, channel_multiplier, opts \\ []) when is_integer(channel_multiplier) and channel_multiplier >= 1 do opts = Keyword.validate!(opts, [ :name, :activation, :meta, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true, kernel_size: 1, strides: 1, padding: :valid, input_dilation: 1, kernel_dilation: 1, channels: :last ]) kernel_size = opts[:kernel_size] strides = opts[:strides] padding = opts[:padding] input_dilation = opts[:input_dilation] kernel_dilation = opts[:kernel_dilation] channels = opts[:channels] k1_shape = &Axon.Shape.separable_conv2d_kernel( &1, channel_multiplier, kernel_size, 1, channels ) k2_shape = &Axon.Shape.separable_conv2d_kernel( &1, channel_multiplier, kernel_size, 2, channels ) b1_shape = &Axon.Shape.separable_conv2d_bias(&1, channel_multiplier, kernel_size, channels) b2_shape = &Axon.Shape.separable_conv2d_bias(&1, channel_multiplier, kernel_size, channels) kernel_initializer = opts[:kernel_initializer] k1 = param("kernel_1", k1_shape, initializer: kernel_initializer) k2 = param("kernel_2", k2_shape, initializer: kernel_initializer) {inputs, op} = if opts[:use_bias] do bias_initializer = opts[:bias_initializer] b1 = param("bias_1", b1_shape, initializer: bias_initializer) b2 = param("bias_2", b2_shape, initializer: bias_initializer) {[x, k1, b1, k2, b2], :separable_conv2d} else {[x, k1, k2], :separable_conv2d} end node = layer( op, inputs, name: opts[:name], meta: opts[:meta], strides: strides, padding: padding, input_dilation: input_dilation, kernel_dilation: kernel_dilation, channels: channels, op_name: :separable_conv2d ) if activation = opts[:activation] do activation(node, activation) else node end end @doc """ Adds a depthwise separable 3-dimensional convolution to the network. Depthwise separable convolutions break the kernel into kernels for each dimension of the input and perform a depthwise conv over the input with each kernel. Compiles to `Axon.Layers.separable_conv3d/8`. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros` * `:activation` - element-wise activation function. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true` * `:kernel_size` - size of the kernel spatial dimensions. Defaults to `1`. * `:strides` - stride during convolution. Defaults to `1`. * `:padding` - padding to the spatial dimensions of the input. Defaults to `:valid`. * `:input_dilation` - dilation to apply to input. Defaults to `1`. * `:kernel_dilation` - dilation to apply to kernel. Defaults to `1`. * `:channels` - channels location. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :convolution def separable_conv3d(%Axon{} = x, channel_multiplier, opts \\ []) when is_integer(channel_multiplier) and channel_multiplier >= 1 do opts = Keyword.validate!(opts, [ :name, :activation, :meta, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true, kernel_size: 1, strides: 1, padding: :valid, input_dilation: 1, kernel_dilation: 1, channels: :last ]) kernel_size = opts[:kernel_size] strides = opts[:strides] padding = opts[:padding] input_dilation = opts[:input_dilation] kernel_dilation = opts[:kernel_dilation] channels = opts[:channels] k1_shape = &Axon.Shape.separable_conv3d_kernel( &1, channel_multiplier, kernel_size, 1, channels ) k2_shape = &Axon.Shape.separable_conv3d_kernel( &1, channel_multiplier, kernel_size, 2, channels ) k3_shape = &Axon.Shape.separable_conv3d_kernel( &1, channel_multiplier, kernel_size, 3, channels ) b1_shape = &Axon.Shape.separable_conv3d_bias(&1, channel_multiplier, kernel_size, channels) b2_shape = &Axon.Shape.separable_conv3d_bias(&1, channel_multiplier, kernel_size, channels) b3_shape = &Axon.Shape.separable_conv3d_bias(&1, channel_multiplier, kernel_size, channels) kernel_initializer = opts[:kernel_initializer] k1 = param("kernel_1", k1_shape, initializer: kernel_initializer) k2 = param("kernel_2", k2_shape, initializer: kernel_initializer) k3 = param("kernel_3", k3_shape, initializer: kernel_initializer) {inputs, op} = if opts[:use_bias] do bias_initializer = opts[:bias_initializer] b1 = param("bias_1", b1_shape, initializer: bias_initializer) b2 = param("bias_2", b2_shape, initializer: bias_initializer) b3 = param("bias_3", b3_shape, initializer: bias_initializer) {[x, k1, b1, k2, b2, k3, b3], :separable_conv3d} else {[x, k1, k2, k3], :separable_conv3d} end node = layer( op, inputs, name: opts[:name], meta: opts[:meta], strides: strides, padding: padding, input_dilation: input_dilation, kernel_dilation: kernel_dilation, channels: channels, op_name: :separable_conv3d ) if activation = opts[:activation] do activation(node, activation) else node end end @activation_layers [ {:celu, "Continuously-differentiable exponential linear unit", "a"}, {:elu, "Exponential linear unit", "an"}, {:exp, "Exponential", "an"}, {:gelu, "Gaussian error linear unit", "a"}, {:hard_sigmoid, "Hard sigmoid", "a"}, {:hard_silu, "Hard sigmoid weighted linear unit", "a"}, {:hard_tanh, "Hard hyperbolic tangent", "a"}, {:leaky_relu, "Leaky rectified linear unit", "a"}, {:linear, "Linear", "a"}, {:log_sumexp, "Log-sumexp", "a"}, {:log_sigmoid, "Log-sigmoid", "a"}, {:log_softmax, "Log-softmax", "a"}, {:mish, "Mish", "a"}, {:relu, "Rectified linear unit", "a"}, {:relu6, "Rectified linear unit 6", "a"}, {:sigmoid, "Sigmoid", "a"}, {:silu, "Sigmoid weighted linear unit", "a"}, {:selu, "Scaled exponential linear unit", "a"}, {:softmax, "Softmax", "a"}, {:softplus, "Softplus", "a"}, {:softsign, "Softsign", "a"}, {:tanh, "Hyperbolic tangent", "a"} ] @doc """ Adds an activation layer to the network. Activation layers are element-wise functions typically called after the output of another layer. ## Options * `:name` - layer name. """ @doc type: :activation def activation(x, activation, opts \\ []) def activation(%Axon{} = x, activation, opts) when is_atom(activation) do opts = opts ++ [op_name: activation] layer(activation, [x], opts) end def activation(%Axon{} = x, activation, opts) when is_function(activation) do layer(activation, [x], opts) end ## Activation for {activation, name, a_or_an} <- @activation_layers do @doc """ Adds #{a_or_an} #{name} activation layer to the network. See `Axon.Activations.#{Atom.to_string(activation)}/1` for more details. ## Options * `:name` - layer name. """ @doc type: :activation def unquote(activation)(%Axon{} = x, opts \\ []) do activation(x, unquote(activation), opts) end end ## Dropout @dropout_layers [ {:dropout, "Dropout", "a"}, {:feature_alpha_dropout, "Feature alpha dropout", "a"}, {:spatial_dropout, "Spatial dropout", "a"}, {:alpha_dropout, "Alpha dropout", "an"} ] for {dropout, name, a_or_an} <- @dropout_layers do @doc """ Adds #{a_or_an} #{name} layer to the network. See `Axon.Layers.#{Atom.to_string(dropout)}/2` for more details. ## Options * `:name` - layer name. * `:rate` - dropout rate. Defaults to `0.5`. Needs to be equal or greater than zero and less than one. """ @doc type: :dropout def unquote(dropout)(%Axon{} = x, opts \\ []) do dropout(x, unquote(dropout), opts) end end defp dropout(%Axon{} = x, dropout, opts) do opts = Keyword.validate!(opts, [:name, :meta, :seed, rate: 0.5]) seed = Keyword.get_lazy(opts, :seed, fn -> :erlang.system_time() end) if opts[:rate] < 0 or opts[:rate] >= 1 do raise ArgumentError, "The dropout rate needs to be >= 0 and < 1, got #{inspect(opts[:rate])}" end key_state = param("key", fn _ -> {2} end, type: {:u, 32}, initializer: fn _, _ -> Nx.Random.key(seed) end, kind: :state ) layer(dropout, [x, key_state], name: opts[:name], meta: opts[:meta], rate: opts[:rate], op_name: dropout, mode: :train ) end ## Pooling @pooling_layers [ {:max_pool, "Max pool", "a"}, {:avg_pool, "Average pool", "an"}, {:lp_pool, "Power average pool", "a"} ] for {pool, name, a_or_an} <- @pooling_layers do @doc """ Adds #{a_or_an} #{name} layer to the network. See `Axon.Layers.#{Atom.to_string(pool)}/2` for more details. ## Options * `:name` - layer name. * `:kernel_size` - size of the kernel spatial dimensions. Defaults to `1`. * `:strides` - stride during convolution. Defaults to size of kernel. * `:padding` - padding to the spatial dimensions of the input. Defaults to `:valid`. * `:dilations` - window dilations. Defaults to `1`. * `:channels` - channels location. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :pooling def unquote(pool)(%Axon{} = x, opts \\ []) do pool(x, unquote(pool), opts) end end defp pool(%Axon{} = x, pool, opts) do opts = Keyword.validate!(opts, [ :name, :strides, :meta, kernel_size: 1, padding: :valid, channels: :last, dilations: 1, norm: 2 ]) kernel_size = opts[:kernel_size] strides = opts[:strides] padding = opts[:padding] channels = opts[:channels] dilations = opts[:dilations] name = opts[:name] opts = if pool == :lp_pool do norm = opts[:norm] [ name: name, meta: opts[:meta], kernel_size: kernel_size, strides: strides, padding: padding, channels: channels, window_dilations: dilations, norm: norm, op_name: pool ] else [ name: name, meta: opts[:meta], kernel_size: kernel_size, strides: strides, padding: padding, channels: channels, window_dilations: dilations, op_name: pool ] end layer(pool, [x], opts) end @doc """ Adds a blur pooling layer to the network. See `Axon.Layers.blur_pool/2` for more details. ## Options * `:name` - layer name. * `:strides` - stride during convolution. Defaults to `1`. * `:channels` - channels location. One of `:first` or `:last`. Defaults to `:last`. """ def blur_pool(%Axon{} = x, opts \\ []) do opts = Keyword.validate!(opts, [ :name, :meta, channels: :last ]) channels = opts[:channels] name = opts[:name] opts = [ name: name, meta: opts[:meta], channels: channels, op_name: :blur_pool ] layer(:blur_pool, [x], opts) end ## Adaptive Pooling @adaptive_pooling_layers [ {:adaptive_avg_pool, "Adaptive average pool", "an"}, {:adaptive_max_pool, "Adaptive max pool", "an"}, {:adaptive_lp_pool, "Adaptive power average pool", "an"} ] for {pool, name, a_or_an} <- @adaptive_pooling_layers do @doc """ Adds #{a_or_an} #{name} layer to the network. See `Axon.Layers.#{Atom.to_string(pool)}/2` for more details. ## Options * `:name` - layer name. * `:output_size` - layer output size. * `:channels` - channel configuration. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :pooling def unquote(pool)(%Axon{} = x, opts \\ []) do adaptive_pool(x, unquote(pool), opts) end end defp adaptive_pool(%Axon{} = x, pool, opts) do opts = Keyword.validate!(opts, [:name, :meta, :output_size, channels: :last, norm: 2]) channels = opts[:channels] name = opts[:name] output_size = opts[:output_size] opts = if pool == :adaptive_lp_pool do norm = opts[:norm] [ name: name, meta: opts[:meta], output_size: output_size, norm: norm, channels: channels, op_name: pool ] else [ name: name, meta: opts[:meta], output_size: output_size, channels: channels, op_name: pool ] end layer(pool, [x], opts) end ## Global Pooling @global_pooling_layers [ {:global_avg_pool, "Global average pool"}, {:global_max_pool, "Global max pool"}, {:global_lp_pool, "Global LP pool"} ] for {pool, name} <- @global_pooling_layers do @doc """ Adds a #{name} layer to the network. See `Axon.Layers.#{Atom.to_string(pool)}/2` for more details. Typically used to connect feature extractors such as those in convolutional neural networks to fully-connected models by reducing inputs along spatial dimensions to only feature and batch dimensions. ## Options * `:name` - layer name. * `:keep_axes` - option to keep reduced axes. If `true`, keeps reduced axes with a dimension size of 1. * `:channels` - channel configuration. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :pooling def unquote(pool)(%Axon{} = x, opts \\ []) do global_pool(x, unquote(pool), opts) end end defp global_pool(%Axon{} = x, pool, opts) do opts = Keyword.validate!(opts, [:name, :meta, keep_axes: false, channels: :last, norm: 2]) keep_axes = opts[:keep_axes] name = opts[:name] channels = opts[:channels] opts = if pool == :global_lp_pool do norm = opts[:norm] [ name: name, meta: opts[:meta], channels: channels, keep_axes: keep_axes, norm: norm, op_name: pool ] else [name: name, meta: opts[:meta], channels: channels, keep_axes: keep_axes, op_name: pool] end layer(pool, [x], opts) end ## Normalization @normalization_with_stats_layers [ {:batch_norm, "Batch normalization", "a"}, {:instance_norm, "Instance normalization", "an"} ] for {norm, name, a_or_an} <- @normalization_with_stats_layers do @doc """ Adds #{a_or_an} #{name} layer to the network. See `Axon.Layers.#{Atom.to_string(norm)}/6` for more details. ## Options * `:name` - layer name. * `:gamma_initializer` - gamma parameter initializer. Defaults to `:glorot_uniform`. * `:beta_initializer` - beta parameter initializer. Defaults to `:zeros`. * `:channel_index` - input feature index used for calculating mean and variance. Defaults to `-1`. * `:epsilon` - numerical stability term. Defaults to `1.0e-5`. """ @doc type: :normalization def unquote(norm)(%Axon{} = x, opts \\ []) do norm_with_stats(x, unquote(norm), opts) end end defp norm_with_stats(%Axon{} = x, norm, opts) do opts = Keyword.validate!(opts, [ :name, :meta, gamma_initializer: :glorot_uniform, beta_initializer: :zeros, channel_index: -1, epsilon: 1.0e-5, momentum: 0.1 ]) channel_index = opts[:channel_index] gamma_shape = &Axon.Shape.norm_param(&1, channel_index) beta_shape = &Axon.Shape.norm_param(&1, channel_index) mean_shape = &Axon.Shape.norm_param(&1, channel_index) var_shape = &Axon.Shape.norm_param(&1, channel_index) gamma = param("gamma", gamma_shape, initializer: opts[:gamma_initializer]) beta = param("beta", beta_shape, initializer: opts[:beta_initializer]) mean = param("mean", mean_shape, initializer: :zeros, kind: :state) var = param("var", var_shape, initializer: :ones, kind: :state) layer( norm, [x, gamma, beta, mean, var], name: opts[:name], meta: opts[:meta], epsilon: opts[:epsilon], channel_index: channel_index, momentum: opts[:momentum], op_name: norm ) end @normalization_layers [ {:layer_norm, "Layer normalization", "a"} ] for {norm, name, a_or_an} <- @normalization_layers do @doc """ Adds #{a_or_an} #{name} layer to the network. See `Axon.Layers.#{Atom.to_string(norm)}/4` for more details. ## Options * `:name` - layer name. * `:gamma_initializer` - gamma parameter initializer. Defaults to `:glorot_uniform`. * `:beta_initializer` - beta parameter initializer. Defaults to `:zeros`. * `:channel_index` - input feature index used for calculating mean and variance. Defaults to `-1`. * `:epsilon` - numerical stability term. """ @doc type: :normalization def unquote(norm)(%Axon{} = x, opts \\ []) do norm(x, unquote(norm), opts) end end defp norm(%Axon{} = x, norm, opts) do opts = Keyword.validate!(opts, [ :name, :meta, gamma_initializer: :glorot_uniform, beta_initializer: :zeros, channel_index: -1, epsilon: 1.0e-5 ]) channel_index = opts[:channel_index] gamma_shape = &Axon.Shape.norm_param(&1, channel_index) beta_shape = &Axon.Shape.norm_param(&1, channel_index) gamma = param("gamma", gamma_shape, initializer: opts[:gamma_initializer]) beta = param("beta", beta_shape, initializer: opts[:beta_initializer]) layer(norm, [x, gamma, beta], name: opts[:name], meta: opts[:meta], epsilon: opts[:epsilon], channel_index: channel_index, op_name: norm ) end @doc """ Adds a group normalization layer to the network. See `Axon.Layers.group_norm/4` for more details. ## Options * `:name` - layer name. * `:gamma_initializer` - gamma parameter initializer. Defaults to `:glorot_uniform`. * `:beta_initializer` - beta parameter initializer. Defaults to `:zeros`. * `:channel_index` - input feature index used for calculating mean and variance. Defaults to `-1`. * `:epsilon` - numerical stability term. """ @doc type: :normalization def group_norm(%Axon{} = x, num_groups, opts \\ []) when is_integer(num_groups) and num_groups >= 1 do opts = Keyword.validate!(opts, [ :name, :meta, gamma_initializer: :ones, beta_initializer: :zeros, channel_index: -1, epsilon: 1.0e-5 ]) channel_index = opts[:channel_index] gamma_shape = &Axon.Shape.norm_param(&1, channel_index) beta_shape = &Axon.Shape.norm_param(&1, channel_index) gamma = param("gamma", gamma_shape, initializer: opts[:gamma_initializer]) beta = param("beta", beta_shape, initializer: opts[:beta_initializer]) layer(:group_norm, [x, gamma, beta], name: opts[:name], meta: opts[:meta], epsilon: opts[:epsilon], channel_index: channel_index, num_groups: num_groups, op_name: :group_norm ) end @doc """ Applies the given `Nx` expression to the input. Nx layers are meant for quick applications of functions without trainable parameters. For example, they are useful for applying functions which apply accessors to containers: model = Axon.container({foo, bar}) Axon.nx(model, &elem(&1, 0)) ## Options * `:name` - layer name. """ def nx(input, fun, opts \\ []) @doc type: :special def nx(%Axon{} = x, fun, opts) when is_function(fun, 1) do opts = Keyword.validate!(opts, [:name, :meta, :op_name]) op_name = opts[:op_name] || :nx fun_with_params = fn x, _opts -> fun.(x) end layer(fun_with_params, [x], name: opts[:name], meta: opts[:meta], op_name: op_name) end @doc """ Adds a flatten layer to the network. This layer will flatten all but the batch dimensions of the input into a single layer. Typically called to flatten the output of a convolution for use with a dense layer. ## Options * `:name` - layer name. """ @doc type: :shape def flatten(%Axon{} = x, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta]) layer(:flatten, [x], name: opts[:name], meta: opts[:meta], op_name: :flatten ) end @doc """ Adds a reshape layer to the network. This layer implements a special case of `Nx.reshape` which accounts for possible batch dimensions in the input tensor. You may pass the magic dimension `:batch` as a placeholder for dynamic batch sizes. You can use `:batch` seamlessly with `:auto` dimension sizes. If the input is an Axon constant, the reshape behavior matches that of `Nx.reshape/2`. ## Options * `:name` - layer name. """ @doc type: :shape def reshape(%Axon{} = x, new_shape, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta]) layer(:reshape, [x], name: opts[:name], meta: opts[:meta], shape: new_shape, op_name: :reshape ) end @doc """ Adds a transpose layer to the network. ## Options * `:name` - layer name. """ @doc type: :shape def transpose(%Axon{} = x, permutation \\ nil, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta]) layer(:transpose, [x], name: opts[:name], meta: opts[:meta], axes: permutation, op_name: :transpose ) end @doc """ Adds a pad layer to the network. This layer will pad the spatial dimensions of the input. Padding configuration is a list of tuples for each spatial dimension. ## Options * `:name` - layer name. * `:channels` - channel configuration. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :shape def pad(%Axon{} = x, config, value \\ 0.0, opts \\ []) when is_list(config) and is_number(value) do opts = Keyword.validate!(opts, [:name, :meta, channels: :last]) channels = opts[:channels] layer(:pad, [x], name: opts[:name], meta: opts[:meta], padding_config: config, value: value, channels: channels, op_name: :pad ) end @doc """ Adds a resize layer to the network. Resizing can be used for interpolation or upsampling input values in a neural network. For example, you can use this layer as an upsampling layer within a GAN. Resize shape must be a tuple representing the resized spatial dimensions of the input tensor. Compiles to `Axon.Layers.resize/2`. ## Options * `:name` - layer name. * `:method` - resize method. Defaults to `:nearest`. * `:antialias` - whether an anti-aliasing filter should be used when downsampling. Defaults to `true`. * `:channels` - channel configuration. One of `:first` or `:last`. Defaults to `:last`. """ @doc type: :shape def resize(%Axon{} = x, resize_shape, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta, method: :nearest, antialias: true, channels: :last]) channels = opts[:channels] layer(:resize, [x], name: opts[:name], meta: opts[:meta], method: opts[:method], antialias: opts[:antialias], channels: channels, size: resize_shape, op_name: :resize ) end @doc """ Adds a concatenate layer to the network. This layer will concatenate inputs along the last dimension unless specified otherwise. ## Options * `:name` - layer name. * `:axis` - concatenate axis. Defaults to `-1`. """ @doc type: :combinator def concatenate(%Axon{} = x, %Axon{} = y, opts) when is_list(opts) do opts = Keyword.validate!(opts, [:name, :meta, axis: -1]) axis = opts[:axis] layer(:concatenate, [container({x, y})], name: opts[:name], meta: opts[:meta], axis: axis, op_name: :concatenate ) end @doc type: :combinator def concatenate([%Axon{} | _] = inputs, opts) when is_list(inputs) and is_list(opts) do opts = Keyword.validate!(opts, [:name, :meta, axis: -1]) axis = opts[:axis] layer(:concatenate, [container(List.to_tuple(inputs))], name: opts[:name], meta: opts[:meta], axis: axis, op_name: :concatenate ) end @doc false def concatenate(%Axon{} = x, %Axon{} = y), do: concatenate(x, y, []) @doc false def concatenate(inputs) when is_list(inputs), do: concatenate(inputs, []) @element_wise_layers [:add, :subtract, :multiply] for op <- @element_wise_layers do @doc """ Adds a #{op} layer to the network. This layer performs an element-wise #{Atom.to_string(op)} operation on input layers. All input layers must be capable of being broadcast together. If one shape has a static batch size, all other shapes must have a static batch size as well. ## Options * `:name` - layer name. """ @doc type: :combinator def unquote(op)(%Axon{} = x, %Axon{} = y, opts) do opts = Keyword.validate!(opts, [:name, :meta]) layer(unquote(op), [container({x, y})], name: opts[:name], meta: opts[:meta], op_name: unquote(op) ) end @doc """ Adds a #{op} layer to the network. This layer performs an element-wise #{Atom.to_string(op)} operation on all input layers. All input layers must be capable of being broadcast together. ## Options * `:name` - layer name. """ @doc type: :combinator def unquote(op)(inputs, opts) when is_list(inputs) and is_list(opts) do opts = Keyword.validate!(opts, [:name, :meta]) layer(unquote(op), [container(List.to_tuple(inputs))], name: opts[:name], meta: opts[:meta], op_name: unquote(op) ) end @doc false def unquote(op)(%Axon{} = x, %Axon{} = y) do unquote(op)(x, y, []) end @doc false def unquote(op)([%Axon{} | _] = inputs), do: unquote(op)(inputs, []) end @doc """ Adds a conditional layer which conditionally executes `true_graph` or `false_graph` based on the condition `cond_fn` at runtime. `cond_fn` is an arity-1 function executed on the output of the parent graph. It must return a boolean scalar tensor (e.g. 1 or 0). The shapes of `true_graph` and `false_graph` must be equal. """ @doc type: :combinator def cond( %Axon{} = parent, cond_fn, %Axon{} = true_graph, %Axon{} = false_graph, opts \\ [] ) when is_function(cond_fn, 1) do opts = Keyword.validate!(opts, [:name, :meta]) layer(:cond, [parent, true_graph, false_graph], name: opts[:name], meta: opts[:meta], cond: cond_fn, op_name: :cond ) end @doc """ Splits input graph into a container of `n` input graphs along the given axis. ## Options * `:name` - layer name. * `:axis` - concatenate axis. Defaults to `-1`. """ @doc type: :combinator def split(parent, splits, opts \\ []) def split(%Axon{} = parent, splits, opts) when is_list(splits) do opts = Keyword.validate!(opts, [:name, :meta, axis: -1]) axis = opts[:axis] {_, split_layers} = for {split, i} <- Enum.with_index(splits), reduce: {0, []} do {num_split, split_layers} -> name = case opts[:name] do names when is_list(names) -> Enum.at(names, i) name -> name end layer = layer( fn x, _ -> Nx.slice_along_axis(x, num_split, split, axis: axis) end, [parent], name: name, meta: opts[:meta], op_name: :split ) {num_split + split, [layer | split_layers]} end split_layers |> Enum.reverse() |> List.to_tuple() end def split(%Axon{} = parent, n, opts) when is_integer(n) do opts = Keyword.validate!(opts, [:name, :meta, axis: -1]) axis = opts[:axis] splits = for i <- 0..(n - 1) do name = case opts[:name] do names when is_list(names) -> Enum.at(names, i) name -> name end layer( &Axon.Layers.split/2, [parent], name: name, meta: opts[:meta], index: i, splits: n, axis: axis, op_name: :split ) end List.to_tuple(splits) end @doc """ Computes a sequence mask according to the given EOS token. Masks can be propagated to recurrent layers or custom layers to indicate that a given token should be ignored in processing. This is useful when you have sequences of variable length. Most commonly, `eos_token` is `0`. ## Options * `:name` - layer name. """ @doc type: :recurrent def mask(%Axon{} = input, eos_token, opts \\ []) when is_integer(eos_token) do opts = Keyword.validate!(opts, [:name, :meta]) fun = fn x, opts -> Nx.equal(Nx.as_type(x, :s64), opts[:eos_token]) end layer(fun, [input], eos_token: eos_token, op_name: :mask, meta: opts[:meta], name: opts[:name] ) end @doc """ Applies the given forward function bidirectionally and merges the results with the given merge function. This is most commonly used with RNNs to capture the dependencies of a sequence in both directions. ## Options * `axis` - Axis to reverse. """ def bidirectional(%Axon{} = input, forward_fun, merge_fun, opts \\ []) when is_function(forward_fun, 1) and is_function(merge_fun, 2) do opts = Keyword.validate!(opts, [:name, axis: 1]) fun = Axon.block( fn x -> Axon.container(forward_fun.(x)) end, name: opts[:name] ) forward_out = fun.(input) backward_out = input |> Axon.nx(&Nx.reverse(&1, axes: [opts[:axis]])) |> fun.() |> Axon.nx(fn x -> deep_new(x, &Nx.reverse(&1, axes: [opts[:axis]])) end) {forward_out, backward_out} |> Axon.container() |> Axon.nx(fn {forward, backward} -> deep_merge(forward, backward, merge_fun) end) end @doc """ See `lstm/3`. """ @doc type: :recurrent def lstm(%Axon{} = x, units) when is_integer(units) and units > 0 do lstm(x, units, []) end @doc """ Adds a long short-term memory (LSTM) layer to the network with a random initial hidden state. See `lstm/4` for more details. ## Additional options * `:recurrent_initializer` - initializer for hidden state. Defaults to `:orthogonal`. """ @doc type: :recurrent def lstm(%Axon{} = x, units, opts) when is_integer(units) and units > 0 and is_list(opts) do {recurrent_initializer, opts} = Keyword.pop(opts, :recurrent_initializer, :glorot_uniform) {seed, opts} = Keyword.pop_lazy(opts, :seed, fn -> :erlang.system_time() end) c = rnn_state(x, units, :lstm, opts[:name], "c", recurrent_initializer, seed) h = rnn_state(x, units, :lstm, opts[:name], "h", recurrent_initializer, seed) lstm(x, {c, h}, units, opts) end def lstm(%Axon{} = x, {%Axon{}, %Axon{}} = hidden_state, units) when is_integer(units) and units > 0 do lstm(x, hidden_state, units, []) end @doc """ Adds a long short-term memory (LSTM) layer to the network with the given initial hidden state. LSTMs apply `Axon.Layers.lstm_cell/7` over an entire input sequence and return: {output_sequence, {new_cell, new_hidden}} You can use the output state as the hidden state of another LSTM layer. ## Options * `:name` - layer name. * `:activation` - recurrent activation. Defaults to `:tanh`. * `:gate` - recurrent gate function. Defaults to `:sigmoid`. * `:unroll` - `:dynamic` (loop preserving) or `:static` (compiled) unrolling of RNN. * `:kernel_initializer` - initializer for kernel weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for bias weights. Defaults to `:zeros`. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true`. """ @doc type: :recurrent def lstm( %Axon{} = x, {%Axon{}, %Axon{}} = hidden_state, units, opts \\ [] ) when is_integer(units) and units > 0 and is_list(opts) do opts = Keyword.validate!(opts, [ :name, :meta, activation: :tanh, gate: :sigmoid, unroll: :dynamic, use_bias: true, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, mask: Axon.constant(0) ]) activation = opts[:activation] gate = opts[:gate] unroll = opts[:unroll] kernel_initializer = opts[:kernel_initializer] input_kernel_template = fn inp, _, _ -> shape = Axon.Shape.rnn_input_kernel(Nx.shape(inp), units, :lstm) Nx.template(shape, :f32) end hidden_kernel_template = fn inp, _, _ -> shape = Axon.Shape.rnn_hidden_kernel(Nx.shape(inp), units, :lstm) Nx.template(shape, :f32) end bias_template = fn inp, _, _ -> shape = Axon.Shape.rnn_bias(Nx.shape(inp), units, :lstm) Nx.template(shape, :f32) end initializer = fn prefix, init -> fn shape, type, key -> split_key = Nx.Random.split(key, parts: 4) init = if is_atom(init) do apply(Axon.Initializers, init, []) else init end fun = case init do init when is_function(init, 2) -> fn _ -> init.(shape, type) end init when is_function(init, 3) -> fn key -> init.(shape, type, key) end end %{ "#{prefix}i" => fun.(split_key[0]), "#{prefix}f" => fun.(split_key[1]), "#{prefix}g" => fun.(split_key[2]), "#{prefix}o" => fun.(split_key[3]) } end end # Parameters input_kernel = parameter("input_kernel", input_kernel_template, initializer: initializer.("wi", kernel_initializer) ) hidden_kernel = parameter("hidden_kernel", hidden_kernel_template, initializer: initializer.("wh", kernel_initializer) ) hidden_state_name = case opts[:name] do nil -> fn _, op_counts -> "lstm_#{op_counts[:lstm]}_hidden_state" end name when is_binary(name) -> "#{name}_hidden_state" end hidden_state = Axon.container(hidden_state, name: hidden_state_name) {inputs, op} = if opts[:use_bias] do bias_initializer = opts[:bias_initializer] bias = parameter("bias", bias_template, initializer: initializer.("b", bias_initializer)) {[x, hidden_state, opts[:mask], input_kernel, hidden_kernel, bias], :lstm} else {[x, hidden_state, opts[:mask], input_kernel, hidden_kernel], &Axon.Layers.lstm/6} end output = layer( op, inputs, name: opts[:name], meta: opts[:meta], activation: activation, gate: gate, unroll: unroll, op_name: :lstm ) new_c_name = case opts[:name] do nil -> fn _, op_counts -> "lstm_#{op_counts[:lstm]}_c_hidden_state" end name when is_binary(name) -> "#{name}_c_hidden_state" end new_h_name = case opts[:name] do nil -> fn _, op_counts -> "lstm_#{op_counts[:lstm]}_h_hidden_state" end name when is_binary(name) -> "#{name}_h_hidden_state" end output_sequence_name = case opts[:name] do nil -> fn _, op_counts -> "lstm_#{op_counts[:lstm]}_output_sequence" end name when is_binary(name) -> "#{name}_output_sequence" end output_sequence = layer(fn x, _ -> elem(x, 0) end, [output], name: output_sequence_name, op_name: :elem ) new_c = layer(fn x, _ -> elem(elem(x, 1), 0) end, [output], name: new_c_name, op_name: :elem ) new_h = layer(fn x, _ -> elem(elem(x, 1), 1) end, [output], name: new_h_name, op_name: :elem ) {output_sequence, {new_c, new_h}} end @doc """ See `gru/3`. """ @doc type: :recurrent def gru(%Axon{} = x, units) do gru(x, units, []) end @doc """ Adds a gated recurrent unit (GRU) layer to the network with a random initial hidden state. See `gru/4` for more details. ## Additional options * `:recurrent_initializer` - initializer for hidden state. Defaults to `:orthogonal`. """ @doc type: :recurrent def gru(%Axon{} = x, units, opts) when is_integer(units) and units > 0 when is_list(opts) do {recurrent_initializer, opts} = Keyword.pop(opts, :recurrent_initializer, :glorot_uniform) {seed, opts} = Keyword.pop_lazy(opts, :seed, fn -> :erlang.system_time() end) h = rnn_state(x, units, :gru, opts[:name], "h", recurrent_initializer, seed) gru(x, {h}, units, opts) end def gru(%Axon{} = x, {%Axon{}} = hidden_state, units) when is_integer(units) and units > 0 do gru(x, hidden_state, units, []) end @doc """ Adds a gated recurrent unit (GRU) layer to the network with the given initial hidden state. GRUs apply `Axon.Layers.gru_cell/7` over an entire input sequence and return: {{new_hidden}, output_sequence} You can use the output state as the hidden state of another GRU layer. ## Options * `:name` - layer name. * `:activation` - recurrent activation. Defaults to `:tanh`. * `:gate` - recurrent gate function. Defaults to `:sigmoid`. * `:unroll` - `:dynamic` (loop preserving) or `:static` (compiled) unrolling of RNN. * `:kernel_initializer` - initializer for kernel weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for bias weights. Defaults to `:zeros`. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true`. """ @doc type: :recurrent def gru( %Axon{} = x, {%Axon{}} = hidden_state, units, opts ) when is_integer(units) and units > 0 and is_list(opts) do opts = Keyword.validate!(opts, [ :name, :meta, mask: Axon.constant(0), activation: :tanh, gate: :sigmoid, unroll: :dynamic, use_bias: true, kernel_initializer: :glorot_uniform, bias_initializer: :zeros ]) activation = opts[:activation] gate = opts[:gate] unroll = opts[:unroll] input_kernel_template = fn inp, _, _ -> shape = Axon.Shape.rnn_input_kernel(Nx.shape(inp), units, :gru) Nx.template(shape, :f32) end hidden_kernel_template = fn inp, _, _ -> shape = Axon.Shape.rnn_hidden_kernel(Nx.shape(inp), units, :gru) Nx.template(shape, :f32) end bias_template = fn inp, _, _ -> shape = Axon.Shape.rnn_bias(Nx.shape(inp), units, :gru) Nx.template(shape, :f32) end initializer = fn prefix, init -> fn shape, type, key -> split_key = Nx.Random.split(key, parts: 3) init = if is_atom(init) do apply(Axon.Initializers, init, []) else init end fun = case init do init when is_function(init, 2) -> fn _ -> init.(shape, type) end init when is_function(init, 3) -> fn key -> init.(shape, type, key) end end %{ "#{prefix}r" => fun.(split_key[0]), "#{prefix}z" => fun.(split_key[1]), "#{prefix}n" => fun.(split_key[2]) } end end input_kernel = parameter("input_kernel", input_kernel_template, initializer: initializer.("wi", opts[:kernel_initializer]) ) hidden_kernel = parameter("hidden_kernel", hidden_kernel_template, initializer: initializer.("wh", opts[:kernel_initializer]) ) hidden_state_name = case opts[:name] do nil -> fn _, op_counts -> "gru_#{op_counts[:gru]}_hidden_state" end name when is_binary(name) -> "#{name}_hidden_state" end hidden_state = Axon.container(hidden_state, name: hidden_state_name) inputs = if opts[:use_bias] do bias_initializer = fn shape, type, key -> split_key = Nx.Random.split(key, parts: 4) init = if is_atom(opts[:bias_initializer]) do apply(Axon.Initializers, opts[:bias_initializer], []) else opts[:bias_initializer] end fun = case init do init when is_function(init, 2) -> fn _ -> init.(shape, type) end init when is_function(init, 3) -> fn key -> init.(shape, type, key) end end %{ "br" => fun.(split_key[0]), "bz" => fun.(split_key[1]), "bin" => fun.(split_key[2]), "bhn" => fun.(split_key[3]) } end bias = parameter("bias", bias_template, initializer: bias_initializer) [x, hidden_state, opts[:mask], input_kernel, hidden_kernel, bias] else [x, hidden_state, opts[:mask], input_kernel, hidden_kernel] end output = layer( :gru, inputs, meta: opts[:meta], name: opts[:name], activation: activation, gate: gate, unroll: unroll, op_name: :gru ) new_h_name = case opts[:name] do nil -> fn _, op_counts -> "gru_#{op_counts[:gru]}_hidden_state" end name when is_binary(name) -> "#{name}_hidden_state" end output_sequence_name = case opts[:name] do nil -> fn _, op_counts -> "gru_#{op_counts[:gru]}_output_sequence" end name when is_binary(name) -> "#{name}_output_sequence" end output_sequence = layer(fn x, _ -> elem(x, 0) end, [output], name: output_sequence_name, op_name: :elem ) new_h = layer(fn x, _ -> elem(elem(x, 1), 0) end, [output], name: new_h_name, op_name: :elem ) {output_sequence, {new_h}} end @doc """ See `conv_lstm/3`. """ @doc type: :recurrent def conv_lstm(%Axon{} = x, units) when is_integer(units) and units > 0 do conv_lstm(x, units, []) end @doc """ Adds a convolutional long short-term memory (LSTM) layer to the network with a random initial hidden state. See `conv_lstm/4` for more details. ## Additional options * `:recurrent_initializer` - initializer for hidden state. Defaults to `:orthogonal`. """ @doc type: :recurrent def conv_lstm(%Axon{} = x, units, opts) when is_integer(units) and units > 0 and is_list(opts) do {recurrent_initializer, opts} = Keyword.pop(opts, :recurrent_initializer, :glorot_uniform) {seed, opts} = Keyword.pop_lazy(opts, :seed, fn -> :erlang.system_time() end) c = rnn_state(x, units, :conv_lstm, opts[:name], "c", recurrent_initializer, seed) h = rnn_state(x, units, :conv_lstm, opts[:name], "h", recurrent_initializer, seed) conv_lstm(x, {c, h}, units, opts) end def conv_lstm(%Axon{} = x, {%Axon{}, %Axon{}} = hidden_state, units) when is_integer(units) and units > 0 do conv_lstm(x, hidden_state, units, []) end @doc """ Adds a convolutional long short-term memory (LSTM) layer to the network with the given initial hidden state.. ConvLSTMs apply `Axon.Layers.conv_lstm_cell/5` over an entire input sequence and return: {{new_cell, new_hidden}, output_sequence} You can use the output state as the hidden state of another ConvLSTM layer. ## Options * `:name` - layer name. * `:padding` - convolutional padding. Defaults to `:same`. * `:kernel_size` - convolutional kernel size. Defaults to `1`. * `:strides` - convolutional strides. Defaults to `1`. * `:unroll` - `:dynamic` (loop preserving) or `:static` (compiled) unrolling of RNN. * `:kernel_initializer` - initializer for kernel weights. Defaults to `:glorot_uniform`. * `:bias_initializer` - initializer for bias weights. Defaults to `:zeros`. * `:use_bias` - whether the layer should add bias to the output. Defaults to `true`. """ @doc type: :recurrent def conv_lstm( %Axon{} = x, {%Axon{}, %Axon{}} = hidden_state, units, opts ) when is_integer(units) and units > 0 and is_list(opts) do opts = Keyword.validate!(opts, [ :name, :meta, mask: Axon.constant(0), padding: :same, kernel_size: 1, strides: 1, unroll: :dynamic, kernel_initializer: :glorot_uniform, bias_initializer: :zeros, use_bias: true ]) padding = opts[:padding] kernel_size = opts[:kernel_size] strides = opts[:strides] unroll = opts[:unroll] kernel_initializer = opts[:kernel_initializer] hidden_kernel_template = fn _, {inp, _}, _ -> shape = Tuple.delete_at(Nx.shape(inp), 1) shape = Axon.Shape.conv_kernel(shape, 4 * units, kernel_size, :first, 1) Nx.template(shape, :f32) end input_kernel_template = fn inp, _, _ -> shape = Tuple.delete_at(Nx.shape(inp), 1) shape = Axon.Shape.conv_kernel(shape, 4 * units, kernel_size, :first, 1) Nx.template(shape, :f32) end bias_template = fn inp, _, _ -> shape = Tuple.delete_at(Nx.shape(inp), 1) shape = Axon.Shape.conv_bias(shape, 4 * units, kernel_size, :first, 1) Nx.template(shape, :f32) end wi = parameter("input_kernel", input_kernel_template, initializer: kernel_initializer) wh = parameter("hidden_kernel", hidden_kernel_template, initializer: kernel_initializer) hidden_state_name = case opts[:name] do nil -> fn _, op_counts -> "conv_lstm_#{op_counts[:conv_lstm]}_hidden_state" end name when is_binary(name) -> "#{name}_hidden_state" end hidden_state = Axon.container(hidden_state, name: hidden_state_name) {inputs, op} = if opts[:use_bias] do bias_initializer = opts[:bias_initializer] b = parameter("bias", bias_template, initializer: bias_initializer) {[x, hidden_state, opts[:mask], wi, wh, b], :conv_lstm} else {[x, hidden_state, opts[:mask], wi, wh], :conv_lstm} end output = layer( op, inputs, meta: opts[:meta], name: opts[:name], conv_opts: [ strides: strides, padding: padding ], unroll: unroll, op_name: :conv_lstm ) new_c_name = case opts[:name] do nil -> fn _, op_counts -> "conv_lstm_#{op_counts[:lstm]}_c_hidden_state" end name when is_binary(name) -> "#{name}_c_hidden_state" end new_h_name = case opts[:name] do nil -> fn _, op_counts -> "conv_lstm_#{op_counts[:lstm]}_h_hidden_state" end name when is_binary(name) -> "#{name}_h_hidden_state" end output_sequence_name = case opts[:name] do nil -> fn _, op_counts -> "conv_lstm_#{op_counts[:lstm]}_output_sequence" end name when is_binary(name) -> "#{name}_output_sequence" end output_sequence = layer(fn x, _ -> elem(x, 0) end, [output], name: output_sequence_name, op_name: :elem ) new_c = layer(fn x, _ -> elem(elem(x, 1), 0) end, [output], name: new_c_name, op_name: :elem ) new_h = layer(fn x, _ -> elem(elem(x, 1), 1) end, [output], name: new_h_name, op_name: :elem ) {output_sequence, {new_c, new_h}} end defp rnn_state(x, units, rnn_type, parent_name, state_name, initializer, seed) do initializer = initializer || :glorot_uniform key_state = param("key", fn _ -> {2} end, type: {:u, 32}, initializer: fn _, _ -> Nx.Random.key(seed) end, kind: :state ) name = case parent_name do nil -> fn _, op_counts -> count = op_counts[rnn_type] || 0 "#{Atom.to_string(rnn_type)}_#{count}_#{state_name}_hidden_state" end parent_name when is_binary(parent_name) -> "#{parent_name}_#{state_name}_hidden_state" end initializer = if is_function(initializer) do initializer else apply(Axon.Initializers, initializer, []) end {:arity, arity} = Function.info(initializer, :arity) {fun, inputs} = cond do arity == 2 -> fun = fn inputs, _opts -> shape = Axon.Shape.rnn_hidden_state(Nx.shape(inputs), units, rnn_type) initializer.(shape, {:f, 32}) end {fun, [x]} arity == 3 -> fun = fn inputs, key, opts -> shape = Axon.Shape.rnn_hidden_state(Nx.shape(inputs), units, rnn_type) keys = Nx.Random.split(key) out = initializer.(shape, {:f, 32}, keys[1]) if opts[:mode] == :train do %Axon.StatefulOutput{output: out, state: %{"key" => keys[0]}} else out end end {fun, [x, key_state]} true -> raise ArgumentError, "bad arity for initializer" end layer(fun, inputs, name: name, op_name: :recurrent_state) end @doc """ Adds an embedding layer to the network. An embedding layer initializes a kernel of shape `{vocab_size, embedding_size}` which acts as a lookup table for sequences of discrete tokens (e.g. sentences). Embeddings are typically used to obtain a dense representation of a sparse input space. ## Options * `:name` - layer name. * `:kernel_initializer` - initializer for `kernel` weights. Defaults to `:uniform`. """ @doc type: :linear def embedding(%Axon{} = x, vocab_size, embedding_size, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta, kernel_initializer: :uniform]) kernel_shape = &Axon.Shape.embedding_kernel(&1, vocab_size, embedding_size) kernel = param("kernel", kernel_shape, initializer: opts[:kernel_initializer]) layer(:embedding, [x, kernel], name: opts[:name], meta: opts[:meta], op_name: :embedding) end @doc """ Adds a bias layer to the network. A bias layer simply adds a trainable bias to an input. ## Options * `:name` - layer name. * `:bias_initializer` - initializer for `bias` weights. Defaults to `:zeros`. """ @doc type: :linear def bias(%Axon{} = x, opts \\ []) do opts = Keyword.validate!(opts, [:name, :meta, bias_initializer: :zeros]) bias_shape = fn shape -> {elem(shape, tuple_size(shape) - 1)} end bias = param("bias", bias_shape, initializer: opts[:bias_initializer]) layer(:bias, [x, bias], name: opts[:name], meta: opts[:meta], op_name: :bias) end @doc """ Adds a stack columns layer to the network. A stack columns layer is designed to be used with `Nx.LazyContainer` data structures like Explorer DataFrames. Given an input which is a DataFrame, `stack_columns/2` will stack the columns in each row to create a single vector. You may optionally specify `:ignore` to ignore certain columns in the container. ## Options * `:name` - layer name. * `:ignore` - keys to ignore when stacking. """ @doc type: :special def stack_columns(%Axon{} = x, opts \\ []) do opts = Keyword.validate!(opts, [:name, ignore: []]) layer(:stack_columns, [x], meta: opts[:meta], name: opts[:name], ignore: opts[:ignore], op_name: :stack_columns ) end @doc """ Freezes parameters returned from the given function or predicate. `fun` can be a predicate `:all`, `up: n`, or `down: n`. `:all` freezes all parameters in the model, `up: n` freezes the first `n` layers up (starting from output), and `down: n` freezes the first `n` layers down (starting from input). `fun` may also be a predicate function which takes a parameter and returns `true` if a parameter should be frozen or `false` otherwise. Freezing parameters is useful when performing transfer learning to leverage features learned from another problem in a new problem. For example, it's common to combine the convolutional base from larger models trained on ImageNet with fresh fully-connected classifiers. The combined model is then trained on fresh data, with the convolutional base frozen so as not to lose information. You can see this example in code here: cnn_base = get_pretrained_cnn_base() model = cnn_base |> Axon.freeze() |> Axon.flatten() |> Axon.dense(1024, activation: :relu) |> Axon.dropout() |> Axon.dense(1000, activation: :softmax) model |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.005)) |> Axon.Loop.run(data, epochs: 10) When compiled, frozen parameters are wrapped in `Nx.Defn.Kernel.stop_grad/1`, which zeros out the gradient with respect to the frozen parameter. Gradients of frozen parameters will return `0.0`, meaning they won't be changed during the update process. """ @doc type: :model @deprecated "Use Axon.ModelState.freeze/2 instead" def freeze(model, fun_or_predicate \\ :all) do freeze(model, fun_or_predicate, true) end defp freeze(%Axon{output: id, nodes: nodes} = axon, fun_or_predicate, flag) do {nodes, _} = traverse_nodes(id, nodes, [], MapSet.new()) nodes = case fun_or_predicate do :all -> freeze_nodes(nodes, flag) [{:up, n}] -> {pre, post} = Enum.split(nodes, n) freeze_nodes(pre, flag) ++ post [{:down, n}] -> {pre, post} = Enum.split(nodes, -n) pre ++ freeze_nodes(post, flag) fun -> Enum.map(nodes, fn %Axon.Node{parameters: params} = axon_node -> %{ axon_node | parameters: Enum.map(params, fn p -> if fun.(p), do: %{p | frozen: flag}, else: p end) } end) end %{axon | nodes: Map.new(nodes, fn %{id: id} = node -> {id, node} end)} end defp freeze_nodes(nodes, flag) do Enum.map(nodes, fn %Axon.Node{parameters: params} = axon_node -> %{axon_node | parameters: Enum.map(params, fn p -> %{p | frozen: flag} end)} end) end @doc """ Unfreezes parameters returned from the given function or predicate. `fun` can be a predicate `:all`, `up: n`, or `down: n`. `:all` freezes all parameters in the model, `up: n` unfreezes the first `n` layers up (starting from output), and `down: n` freezes the first `n` layers down (starting from input). `fun` may also be a predicate function which takes a parameter and returns `true` if a parameter should be unfrozen or `false` otherwise. Unfreezing parameters is useful when fine tuning a model which you have previously frozen and performed transfer learning on. You may want to unfreeze some of the later frozen layers in a model and fine tune them specifically for your application: cnn_base = get_pretrained_cnn_base() model = frozen_model |> Axon.unfreeze(up: 25) model |> Axon.Loop.trainer(:categorical_cross_entropy, Polaris.Optimizers.adam(learning_rate: 0.0005)) |> Axon.Loop.run(data, epochs: 10) When compiled, frozen parameters are wrapped in `Nx.Defn.Kernel.stop_grad/1`, which zeros out the gradient with respect to the frozen parameter. Gradients of frozen parameters will return `0.0`, meaning they won't be changed during the update process. """ @doc type: :model @deprecated "Use Axon.ModelState.freeze/2 instead" def unfreeze(model, fun_or_predicate \\ :all) do freeze(model, fun_or_predicate, false) end @doc """ Attaches a hook to the given Axon model. Hooks compile down to `Nx.Defn.Kernel.hook/3` and provide the same functionality for adding side-effecting operations to a compiled model. For example, you can use hooks to inspect intermediate activations, send data to an external service, and more. Hooks can be configured to be invoked on the following events: * `:initialize` - on model initialization. * `:pre_forward` - before layer forward pass is invoked. * `:forward` - after layer forward pass is invoked. * `:backward` - after layer backward pass is invoked. To invoke a hook on every single event, you may pass `:all` to `on:`. Axon.input("input", shape: {nil, 1}) |> Axon.attach_hook(&IO.inspect/1, on: :all) The default event is `:forward`, assuming you want a hook invoked on the layers forward pass. You may configure hooks to run in one of only training or inference mode using the `:mode` option. The default mode is `:both` to be invoked during both train and inference mode. Axon.input("input", shape: {nil, 1}) |> Axon.attach_hook(&IO.inspect/1, on: :forward, mode: :train) You can also attach multiple hooks to a single layer. Hooks are invoked in the order in which they are declared. If order is important, you should attach hooks in the order you want them to be executed: Axon.input("input", shape: {nil, 1}) # I will be executed first |> Axon.attach_hook(&IO.inspect/1) # I will be executed second |> Axon.attach_hook(fn _ -> IO.write("HERE") end) Hooks are executed at their point of attachment. You must insert hooks at each point you want a hook to execute during model execution. Axon.input("input", shape: {nil, 1}) |> Axon.attach_hook(&IO.inspect/1) |> Axon.relu() |> Axon.attach_hook(&IO.inspect/1) """ @doc type: :debug def attach_hook(x, fun, opts \\ []) def attach_hook(%Axon{output: id, nodes: nodes} = axon, fun, opts) do updated_nodes = Map.update!(nodes, id, fn axon_node -> attach_hook(axon_node, fun, opts) end) %{axon | nodes: updated_nodes} end def attach_hook(%Axon.Node{hooks: hooks} = axon_node, fun, opts) do opts = Keyword.validate!(opts, on: :forward, mode: :both) on_event = opts[:on] mode = opts[:mode] %{axon_node | hooks: [{on_event, mode, fun} | hooks]} end ## Graph Manipulation and Utilities # TODO: Revisit later with new decoupled structs # e.g. there should be a node API and graph API @doc """ Returns a node's immediate parameters. Note this does not take into account parameters of parent layers - only the parameters which belong to the immediate layer. """ @doc type: :graph def get_parameters(%Axon{output: id, nodes: nodes}) do Access.get(nodes, [id, :parameters]) end @doc """ Sets a node's immediate parameters to the given parameters. Note this does not take into account parameters of parent layers - only the parameters which belong to the immediate layer. The new parameters must be compatible with the layer's old parameters. """ @doc type: :graph def set_parameters(%Axon{output: id, nodes: nodes} = axon, new_params) do # TODO: Check compatibility updated_nodes = Map.update!(nodes, id, fn axon_node -> %{axon_node | parameters: new_params} end) %{axon | nodes: updated_nodes} end @doc """ Returns a node's immediate input options. Note that this does not take into account options of parent layers, only the option which belong to the immediate layer. """ @doc type: :graph def get_options(%Axon{output: id, nodes: nodes}) do Access.get(nodes, [id, :opts]) end @doc """ Sets a node's immediate options to the given input options. Note that this does not take into account options of parent layers, only the option which belong to the immediate layer. New options must be compatible with the given layer op. Adding unsupported options to an Axon layer will result in an error at graph execution time. """ @doc type: :graph def set_options(%Axon{output: id, nodes: nodes} = axon, new_opts) do updated_nodes = Map.update!(nodes, id, fn axon_node -> %{axon_node | opts: new_opts} end) %{axon | nodes: updated_nodes} end @doc """ Returns information about a model's inputs. """ @doc type: :graph def get_inputs(%Axon{} = axon) do reduce_nodes(axon, %{}, fn %Axon.Node{op: :input, name: name, opts: opts}, inputs -> name = name.(:input, %{}) Map.put(inputs, name, opts[:shape]) _, inputs -> inputs end) end @doc """ Returns a model's output template from the given input template. The output template gives you access to the output shape and type of the given input graph. """ @doc type: :graph def get_output_shape(%Axon{} = axon, inputs, opts \\ []) do {init_fn, forward_fn} = build(axon, opts ++ [raise_on_none: false]) inputs = case inputs do %Nx.Tensor{} = input -> Nx.to_template(input) inputs when is_map(inputs) -> Map.new(inputs, fn {k, v} -> {k, Nx.to_template(v)} end) end fun = Nx.Defn.jit( fn inputs -> forward_fn.(init_fn.(inputs, Axon.ModelState.empty()), inputs) end, compiler: Axon.Defn ) deep_new(apply(fun, [inputs]), &Nx.to_template/1) end @doc """ Returns a map of model op counts for each unique operation in a model by their given `:op_name`. ## Examples iex> model = Axon.input("input", shape: {nil, 1}) |> Axon.dense(2) iex> Axon.get_op_counts(model) %{input: 1, dense: 1} iex> model = Axon.input("input", shape: {nil, 1}) |> Axon.tanh() |> Axon.tanh() iex> Axon.get_op_counts(model) %{input: 1, tanh: 2} """ @doc type: :graph def get_op_counts(%Axon{} = axon) do reduce_nodes(axon, %{}, fn %Axon.Node{op_name: op}, op_counts -> Map.update(op_counts, op, 1, fn x -> x + 1 end) end) end @doc """ Traverses graph nodes in order, applying `fun` to each node exactly once to return a transformed node in its place(s) in the graph. This function maintains an internal cache which ensures each node is only visited and transformed exactly once. `fun` must accept an Axon node and return an Axon node. Please note that modifying node lineage (e.g. altering a node's parent) will result in disconnected graphs. ## Examples One common use of this function is to implement common instrumentation between layers without needing to build a new explicitly instrumented version of a model. For example, you can use this function to visualize intermediate activations of all convolutional layers in a model: instrumented_model = Axon.map_nodes(model, fn %Axon.Node{op: :conv} = axon_node -> Axon.attach_hook(axon_node, &visualize_activations/1) axon_node -> axon_node end) Another use case is to replace entire classes of layers with another. For example, you may want to replace all relu layers with tanh layers: new_model = Axon.map_nodes(model, fn %Axon.Node{op: :relu} = axon_node -> %{axon_node | op: :tanh} graph -> graph end) For more complex graph rewriting and manipulation cases, see `Axon.rewrite_nodes/2`. """ @doc type: :graph def map_nodes(%Axon{output: id, nodes: nodes} = axon, fun) when is_function(fun, 1) do {inorder_nodes, _} = traverse_nodes(id, nodes, [], MapSet.new()) updated_nodes = Map.new(inorder_nodes, fn %{id: id} = axon_node -> {id, fun.(axon_node)} end) %{axon | nodes: updated_nodes} end @doc """ Traverses graph nodes in order, applying `fun` to each node exactly once to return a transformed node in its place(s) in the graph. This function maintains an internal cache which ensures each node is only visited and transformed exactly once. `fun` must accept an Axon node and accumulator and return an updated accumulator. ## Examples Internally this function is used in several places to accumulate graph metadata. For example, you can use it to count the number of a certain type of operation in the graph: Axon.reduce_nodes(model, 0, fn %Axon.Nodes{op: :relu}, acc -> acc + 1 _, acc -> acc end) """ @doc type: :graph def reduce_nodes(%Axon{output: id, nodes: nodes}, acc, fun) when is_function(fun, 2) do {inorder_nodes, _} = traverse_nodes(id, nodes, [], MapSet.new()) Enum.reduce(inorder_nodes, acc, fun) end @doc """ Rewrite and manipulate nodes in the Axon execution graph. Axon models are represented as a graph of nodes. Working on these nodes directly can be difficult and lead to disconnected and invalid graphs. In some cases, you simply want to rewrite patterns. This function takes an Axon model and traverses the nodes, applying the rewrite `fun` on each node to rewrite some or all of the nodes in the Axon model. The rewrite function is an arity-1 function which takes the current Axon node as input and returns a function that replaces or rewrites the given node. For example, you can define a simple rewriter which replaces the `:relu` layers with `:tanh` layers: tanh_rewriter = fn [%Axon{} = x], _output -> Axon.relu(x) end Axon.rewrite_nodes(model, fn %Axon.Node{op: :relu} -> tanh_rewriter _ -> :skip end) Notice that the rewriter receives all of the original graph inputs *as well as* the original graph outputs. This makes certain transformations which may rely on both the input and output, such as LoRA, much easier to perform. """ @doc type: :graph def rewrite_nodes(%Axon{output: id, nodes: nodes}, fun) when is_function(fun, 1) do {inorder_nodes, _} = traverse_nodes(id, nodes, [], MapSet.new()) updated_nodes = Enum.reduce(inorder_nodes, nodes, fn %{id: original_id, parent: parents} = current_node, nodes -> rewriter = fun.(current_node) case rewriter do :skip -> nodes rewriter when is_function(rewriter, 2) -> input_axons = Enum.map(parents, &%Axon{output: &1, nodes: nodes}) %Axon{output: swapped_id} = placeholder_output = Axon.input("placeholder_output") %Axon{output: new_node_id, nodes: updated_nodes} = rewriter.(input_axons, placeholder_output) # now we have to swap the IDs for the rewritten model so that # anything that references this node takes the new, rewritten form # as an input properly original_node = %{updated_nodes[original_id] | id: swapped_id} updated_node = %{updated_nodes[new_node_id] | id: original_id} updated_nodes |> Map.replace(swapped_id, original_node) |> Map.replace(original_id, updated_node) end end) # if we removed any nodes (like by just using the input instead) # then technically we will have extra nodes in the graph, so we # can prune them by traversing once again {pruned_nodes, _} = traverse_nodes(id, updated_nodes, [], MapSet.new()) pruned_nodes = Map.new(pruned_nodes, fn %{id: id} = axon_node -> {id, axon_node} end) %Axon{output: id, nodes: pruned_nodes} end defp traverse_nodes(id, nodes, acc, visited) do if MapSet.member?(visited, id) do {acc, visited} else %{parent: parents} = parent = nodes[id] {acc, visited} = Enum.reduce(parents, {acc, visited}, fn pid, {acc, visited} -> traverse_nodes(pid, nodes, acc, visited) end) {[parent | acc], MapSet.put(visited, id)} end end @doc """ Pops the top node off of the graph. This returns the popped node and the updated graph: {_node, model} = Axon.pop_node(model) """ @doc type: :graph def pop_node(%Axon{nodes: nodes, output: id}) do {popped, nodes} = Map.pop!(nodes, id) case popped do %{op_name: :container, parent: parents, op: fun} = popped -> {popped, apply(fun, Enum.map(parents, &%Axon{nodes: nodes, output: &1}) ++ [[]])} %{parent: [_ | _] = parents} = popped -> {popped, Enum.map(parents, &%Axon{nodes: nodes, output: &1})} %{parent: [parent_id]} = popped -> {popped, %Axon{nodes: nodes, output: parent_id}} end end @doc """ Builds the given model to `{init_fn, predict_fn}`. The given functions can be either given as arguments to `Nx.Defn` functions or be invoked directly, to perform just-in-time compilation and execution. If you want to compile the model (instead of just-in-time) based on a predefined initialization shape, see `compile/4`. ## `init_fn` The `init_fn` receives two arguments, the input template and an optional map with initial parameters for layers or namespaces: {init_fn, predict_fn} = Axon.build(model) init_fn.(Nx.template({1, 1}, {:f, 32}), %{"dense_0" => dense_params}) ## `predict_fn` The `predict_fn` receives two arguments, the trained parameters and the actual inputs: {_init_fn, predict_fn} = Axon.build(model, opts) predict_fn.(params, input) ## Options * `:compiler` - the underlying `Nx.Defn` compiler to perform JIT compilation when the functions are invoked. If none is passed, it uses the default compiler configured in `Nx.Defn`; * `:debug` - if `true`, will log graph traversal and generation metrics. Also forwarded to JIT if debug mode is available for your chosen compiler or backend. Defaults to `false` * `:print_values` - if `true`, will print intermediate layer values to the screen for inspection. This is useful if you need to debug intermediate values of a model * `:mode` - one of `:inference` or `:train`. Forwarded to layers to control differences in compilation at training or inference time. Defaults to `:inference` * `:global_layer_options` - a keyword list of options passed to layers that accept said options All other options are forwarded to the underlying JIT compiler. """ @doc type: :model def build(model, opts \\ []) when is_list(opts) do if opts[:backend] do IO.warn( "the :backend option has no effect on Axon.build/2. " <> "Use Nx.default_backend/1 to set a backend instead" ) end {init_fn, predict_fn} = Axon.Compiler.build(model, opts) opts = [on_conflict: :reuse] ++ opts {Nx.Defn.jit(init_fn, opts), Nx.Defn.jit(predict_fn, opts)} end @doc """ Compiles the given model to `{init_params, predict_fn}`. This function will compile a model specialized to the given input shapes and types. This is useful for avoiding the overhead of long compilations at program runtime. You must provide template inputs which match the expected shapes and types of inputs at execution time. Depending on the Nx compiler, such as EXLA v0.9.1+, both `init_params` the `predict_fn` can be sent across nodes, as long the node that owns them keeps a reference to the underlying resources. This function makes use of the built-in `Nx.Defn.compile/3`. Note that passing inputs which differ in shape or type from the templates provided to this function will result in a crash. ## Options It accepts the same options as `build/2`. """ @doc type: :model def compile(model, template, init_params \\ Axon.ModelState.empty(), opts \\ []) when is_list(opts) do {init_fn, predict_fn} = build(model, opts) model_state = Axon.ModelState.new(init_params) # If there is a disk cache, we only want it to apply to the predict function init_opts = if is_binary(opts[:cache]), do: Keyword.delete(opts, :cache), else: opts init_params = Nx.Defn.jit_apply(init_fn, [template, model_state], init_opts) predict_compiled_fn = Nx.Defn.compile(predict_fn, [init_params, template], opts) {init_params, predict_compiled_fn} end @doc """ Compiles and returns the given model's init function expression with the given options. The returned expression is an Nx expression which can be traversed and lowered to an IR or inspected for debugging purposes. You may optionally specify initial parameters for some layers or namespaces by passing a partial parameter map: Axon.trace_init(model, %{"dense_0" => dense_params}) The parameter map will be merged with the initialized model parameters. ## Options * `:debug` - if `true`, will log graph traversal and generation metrics. Also forwarded to JIT if debug mode is available for your chosen compiler or backend. Defaults to `false` """ @doc type: :debug def trace_init(model, template, params \\ Axon.ModelState.empty(), opts \\ []) do {init_fn, _} = build(model, opts) Nx.Defn.jit(init_fn, compiler: Axon.Defn).(template, Axon.ModelState.new(params)) end @doc """ Compiles and returns the given model's forward function expression with the given options. The returned expression is an Nx expression which can be traversed and lowered to an IR or inspected for debugging purposes. ## Options * `:mode` - one of `:inference` or `:train`. Forwarded to layers to control differences in compilation at training or inference time. Defaults to `:inference` * `:debug` - if `true`, will log graph traversal and generation metrics. Also forwarded to JIT if debug mode is available for your chosen compiler or backend. Defaults to `false` """ @doc type: :debug def trace_forward(model, inputs, params, opts \\ []) when is_list(opts) do {_, forward_fun} = build(model, opts) Nx.Defn.jit(forward_fun, compiler: Axon.Defn).(Axon.ModelState.new(params), inputs) end @doc """ Compiles and returns the given model's backward function expression with respect to the given loss function. The returned expression is an Nx expression which can be traversed and lowered to an IR or inspected for debugging purposes. The given loss function must be a scalar loss function which expects inputs and targets with the same shapes as the model's output shapes as determined by the model's signature. ## Options * `:debug` - if `true`, will log graph traversal and generation metrics. Also forwarded to JIT if debug mode is available for your chosen compiler or backend. Defaults to `false` """ @doc type: :debug def trace_backward(model, inputs, params, loss, opts \\ []) do {_, forward_fn} = build(model, opts ++ [mode: :train]) backward_fn = fn params, inputs, targets -> Nx.Defn.grad(params, fn params -> %{prediction: preds} = forward_fn.(params, inputs) loss.(targets, preds) end) end %{prediction: outputs} = Nx.Defn.jit(forward_fn, compiler: Axon.Defn).(Axon.ModelState.new(params), inputs) inputs = [params, inputs, outputs] apply(Nx.Defn.jit(backward_fn, compiler: Axon.Defn), inputs) end @doc false @deprecated "Use Axon.build/2 instead" def init(model, template, params \\ Axon.ModelState.empty(), opts \\ []) when is_list(opts) do {init_fn, _predict_fn} = build(model, opts) init_fn.(template, Axon.ModelState.new(params)) end @doc """ Builds and runs the given Axon `model` with `params` and `input`. This is equivalent to calling `build/2` and then invoking the predict function. ## Options * `:mode` - one of `:inference` or `:train`. Forwarded to layers to control differences in compilation at training or inference time. Defaults to `:inference` * `:debug` - if `true`, will log graph traversal and generation metrics. Also forwarded to JIT if debug mode is available for your chosen compiler or backend. Defaults to `false` All other options are forwarded to the default JIT compiler or backend. """ @doc type: :model def predict(%Axon{} = model, params, input, opts \\ []) when is_list(opts) do {_init_fn, predict_fn} = build(model, opts) predict_fn.(Axon.ModelState.new(params), input) end ## Inspection defimpl Inspect do import Inspect.Algebra def inspect(%Axon{output: id, nodes: nodes} = axon, opts) do inputs = axon |> Axon.get_inputs() |> Enum.sort() |> Map.new() op_counts = Axon.get_op_counts(axon) %Axon.Node{op_name: op_name, name: name_fn} = nodes[id] op_counts = Map.update(op_counts, op_name, 0, fn x -> x - 1 end) output_name = name_fn.(op_name, op_counts) node_count = Enum.count(axon.nodes) inner = concat([ line(), "inputs: #{inspect(inputs)}", line(), "outputs: #{inspect(output_name)}", line(), "nodes: #{inspect(node_count)}" ]) force_unfit( concat([ color("#Axon<", :map, opts), nest(inner, 2), line(), color(">", :map, opts) ]) ) end end @doc """ Returns a mapping of layer names to layer properties. """ def properties(%Axon{output: id, nodes: nodes}) do {_, _, properties} = node_properties(id, nodes, {%{}, %{}, %{}}) properties end defp node_properties(id, nodes, {cache, op_counts, properties} = acc) do case cache do %{^id => _} -> {cache, op_counts, properties} %{} -> %Axon.Node{parent: parents, name: name_fn, op_name: op_name} = nodes[id] {cache, op_counts, properties} = Enum.reduce(parents, acc, &node_properties(&1, nodes, &2)) name = name_fn.(op_name, op_counts) op_counts = Map.update(op_counts, op_name, 1, fn x -> x + 1 end) properties = Map.put(properties, name, op_name) {Map.put(cache, id, name), op_counts, properties} end end ## Helpers @valid_initializers [:zeros, :ones, :uniform, :normal, :identity] ++ [:lecun_uniform, :lecun_normal, :he_uniform, :he_normal] ++ [:glorot_uniform, :glorot_normal, :variance_scaling] defp validate_initializer!(initializer) when is_atom(initializer) and initializer in @valid_initializers do apply(Axon.Initializers, initializer, []) end defp validate_initializer!(initializer) when is_function(initializer, 2) do initializer end defp validate_initializer!(initializer) when is_function(initializer, 3) do initializer end defp validate_initializer!(initializer) do raise ArgumentError, "initializer must be one of #{inspect(@valid_initializers)}," <> " or an arity-3 function accepting initializer shape, type, and key" <> " got #{inspect(initializer)}" end # Names are generated lazily at inspect, initialization, and compile # time, so for name we return a function which takes `op` and `op_count` # and returns a unique name for the given model. defp name(type, nil) do fn op, op_counts -> count = op_counts[op] || 0 Atom.to_string(type) <> "_#{count}" end end defp name(_type, name_fn) when is_function(name_fn, 2) do name_fn end defp name(_type, name) when is_binary(name) do fn _, _ -> name end end defp name(_type, name) do raise ArgumentError, "expected layer name to be a binary, a function or nil, " <> "got: #{inspect(name)}" end end