155 lines
5.1 KiB
TypeScript
155 lines
5.1 KiB
TypeScript
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
// Licensed under the MIT License.
|
|
|
|
import {
|
|
InferenceSession,
|
|
InferenceSessionHandler,
|
|
SessionHandler,
|
|
Tensor,
|
|
TRACE_FUNC_BEGIN,
|
|
TRACE_FUNC_END,
|
|
} from 'onnxruntime-common';
|
|
|
|
import { SerializableInternalBuffer, TensorMetadata } from './proxy-messages';
|
|
import { copyFromExternalBuffer, createSession, endProfiling, releaseSession, run } from './proxy-wrapper';
|
|
import { isGpuBufferSupportedType, isMLTensorSupportedType } from './wasm-common';
|
|
import { isNode } from './wasm-utils-env';
|
|
import { loadFile } from './wasm-utils-load-file';
|
|
|
|
export const encodeTensorMetadata = (tensor: Tensor, getName: () => string): TensorMetadata => {
|
|
switch (tensor.location) {
|
|
case 'cpu':
|
|
return [tensor.type, tensor.dims, tensor.data, 'cpu'];
|
|
case 'gpu-buffer':
|
|
return [tensor.type, tensor.dims, { gpuBuffer: tensor.gpuBuffer }, 'gpu-buffer'];
|
|
case 'ml-tensor':
|
|
return [tensor.type, tensor.dims, { mlTensor: tensor.mlTensor }, 'ml-tensor'];
|
|
default:
|
|
throw new Error(`invalid data location: ${tensor.location} for ${getName()}`);
|
|
}
|
|
};
|
|
|
|
export const decodeTensorMetadata = (tensor: TensorMetadata): Tensor => {
|
|
switch (tensor[3]) {
|
|
case 'cpu':
|
|
return new Tensor(tensor[0], tensor[2], tensor[1]);
|
|
case 'gpu-buffer': {
|
|
const dataType = tensor[0];
|
|
if (!isGpuBufferSupportedType(dataType)) {
|
|
throw new Error(`not supported data type: ${dataType} for deserializing GPU tensor`);
|
|
}
|
|
const { gpuBuffer, download, dispose } = tensor[2];
|
|
return Tensor.fromGpuBuffer(gpuBuffer, { dataType, dims: tensor[1], download, dispose });
|
|
}
|
|
case 'ml-tensor': {
|
|
const dataType = tensor[0];
|
|
if (!isMLTensorSupportedType(dataType)) {
|
|
throw new Error(`not supported data type: ${dataType} for deserializing MLTensor tensor`);
|
|
}
|
|
const { mlTensor, download, dispose } = tensor[2];
|
|
return Tensor.fromMLTensor(mlTensor, { dataType, dims: tensor[1], download, dispose });
|
|
}
|
|
default:
|
|
throw new Error(`invalid data location: ${tensor[3]}`);
|
|
}
|
|
};
|
|
|
|
export class OnnxruntimeWebAssemblySessionHandler implements InferenceSessionHandler {
|
|
private sessionId: number;
|
|
|
|
inputNames: readonly string[];
|
|
outputNames: readonly string[];
|
|
inputMetadata: readonly InferenceSession.ValueMetadata[];
|
|
outputMetadata: readonly InferenceSession.ValueMetadata[];
|
|
|
|
async fetchModelAndCopyToWasmMemory(path: string): Promise<SerializableInternalBuffer> {
|
|
// fetch model from url and move to wasm heap.
|
|
return copyFromExternalBuffer(await loadFile(path));
|
|
}
|
|
|
|
async loadModel(pathOrBuffer: string | Uint8Array, options?: InferenceSession.SessionOptions): Promise<void> {
|
|
TRACE_FUNC_BEGIN();
|
|
let model: Parameters<typeof createSession>[0];
|
|
|
|
if (typeof pathOrBuffer === 'string') {
|
|
if (isNode) {
|
|
// node
|
|
model = await loadFile(pathOrBuffer);
|
|
} else {
|
|
// browser
|
|
// fetch model and copy to wasm heap.
|
|
model = await this.fetchModelAndCopyToWasmMemory(pathOrBuffer);
|
|
}
|
|
} else {
|
|
model = pathOrBuffer;
|
|
}
|
|
|
|
[this.sessionId, this.inputNames, this.outputNames, this.inputMetadata, this.outputMetadata] = await createSession(
|
|
model,
|
|
options,
|
|
);
|
|
TRACE_FUNC_END();
|
|
}
|
|
|
|
async dispose(): Promise<void> {
|
|
return releaseSession(this.sessionId);
|
|
}
|
|
|
|
async run(
|
|
feeds: SessionHandler.FeedsType,
|
|
fetches: SessionHandler.FetchesType,
|
|
options: InferenceSession.RunOptions,
|
|
): Promise<SessionHandler.ReturnType> {
|
|
TRACE_FUNC_BEGIN();
|
|
const inputArray: Tensor[] = [];
|
|
const inputIndices: number[] = [];
|
|
Object.entries(feeds).forEach((kvp) => {
|
|
const name = kvp[0];
|
|
const tensor = kvp[1];
|
|
const index = this.inputNames.indexOf(name);
|
|
if (index === -1) {
|
|
throw new Error(`invalid input '${name}'`);
|
|
}
|
|
inputArray.push(tensor);
|
|
inputIndices.push(index);
|
|
});
|
|
|
|
const outputArray: Array<Tensor | null> = [];
|
|
const outputIndices: number[] = [];
|
|
Object.entries(fetches).forEach((kvp) => {
|
|
const name = kvp[0];
|
|
const tensor = kvp[1];
|
|
const index = this.outputNames.indexOf(name);
|
|
if (index === -1) {
|
|
throw new Error(`invalid output '${name}'`);
|
|
}
|
|
outputArray.push(tensor);
|
|
outputIndices.push(index);
|
|
});
|
|
|
|
const inputs = inputArray.map((t, i) =>
|
|
encodeTensorMetadata(t, () => `input "${this.inputNames[inputIndices[i]]}"`),
|
|
);
|
|
const outputs = outputArray.map((t, i) =>
|
|
t ? encodeTensorMetadata(t, () => `output "${this.outputNames[outputIndices[i]]}"`) : null,
|
|
);
|
|
|
|
const results = await run(this.sessionId, inputIndices, inputs, outputIndices, outputs, options);
|
|
|
|
const resultMap: SessionHandler.ReturnType = {};
|
|
for (let i = 0; i < results.length; i++) {
|
|
resultMap[this.outputNames[outputIndices[i]]] = outputArray[i] ?? decodeTensorMetadata(results[i]);
|
|
}
|
|
TRACE_FUNC_END();
|
|
return resultMap;
|
|
}
|
|
|
|
startProfiling(): void {
|
|
// TODO: implement profiling
|
|
}
|
|
|
|
endProfiling(): void {
|
|
void endProfiling(this.sessionId);
|
|
}
|
|
}
|