9.0 KiB
9.0 KiB
Operators Support Table
The following table shows ONNX
operators and the supported opset domain/versions in WebNN EP by ONNX Runtime Web. For example,
7-12, 13+
means ONNX Runtime Web currently supports opset version 7 to 12, 13 and above.
(Note: ONNX Runtime only guarantees support for models stamped with opset version 7 or above for opset domain 'ai.onnx'.)
The WebNN API is available in the latest versions of Chrome and Edge on Windows, Linux, macOS, Android, and ChromeOS behind an "Enables WebNN API" flag. The operator support status may vary across these platforms. Check the WebNN status for the latest implementation details.
Operator | Opset | WebNN API | Comments |
---|---|---|---|
Abs | ai.onnx(7-12, 13+) | abs | |
Add | ai.onnx(7-12, 13, 14+) | add | |
And | ai.onnx(7+) | logicalAnd | |
ArgMax | ai.onnx(7-10, 11, 12, 13+) | argMax | |
ArgMin | ai.onnx(7-10, 11, 12, 13+) | argMin | |
AveragePool | ai.onnx(7-9, 10, 11, 12-18, 19+) | averagePool2d | Only supports 4-D input, 2-D 'kernel_shape' |
BatchNormalization | ai.onnx(7-8, 9-13, 14, 15+) | batchNormalization | Only supports 'training_mode' value is 0, one output |
Cast | ai.onnx(7-8, 9-12, 13-18, 19-20, 21+) | cast | |
Ceil | ai.onnx(7-12, 13+) | ceil | |
Clip | ai.onnx(7-10, 11, 12, 13+) | clamp | |
Concat | ai.onnx(7-10, 11-12, 13+) | concat | |
Conv | ai.onnx(7-10, 11+) | conv2d | Only supports 3-D or 4-D input and 'W' (weight) |
ConvTranspose | ai.onnx(7-10, 11+) | convTranspose2d | Only supports 3-D or 4-D input and 'W' (weight) |
Cos | ai.onnx(7+) | cos | |
CumSum | ai.onnx(11-13, 14+) | cumulativeSum | 'axis' input should be a constant |
Div | ai.onnx(7-12, 13, 14+) | div | |
DequantizeLinear | ai.onnx(10-12, 13-18, 19-20, 21-22, 23+) | dequantizeLinear | The shape of x_scale should be a subsample of the shape of input |
Dropout | ai.onnx(7-9, 10-11, 12, 13-21, 22+) | identity | Only supports test mode |
Einsum | ai.onnx(12+) | reshape, transpose, matmul, reduceSum, mul, triangular | |
Elu | ai.onnx(7+) | elu | |
Equal | ai.onnx(7-10, 11-12, 13-18, 19+) | equal | |
Erf | ai.onnx(7-9, 10-12, 13+) | erf | |
Exp | ai.onnx(7-12, 13+) | exp | |
Expand | ai.onnx(8-12, 13+) | expand | 'shape' input should be a constant |
Flatten | ai.onnx(7-8, 9-10, 11-12, 13-20, 21+) | reshape | |
Floor | ai.onnx(7-12, 13+) | floor | |
Gather | ai.onnx(7-10, 11-12, 13+) | gather | |
GatherElements | ai.onnx(11-12, 13+) | gatherElements | |
GatherND | ai.onnx(11, 12, 13+) | gatherND | Only supports 'batch_dims' == 0 |
Gelu | ai.onnx(20+) | gelu | |
Gemm | ai.onnx(7-8, 9-10, 11-12, 13+) | gemm | Only supports 1-D 'C' input |
GlobalAveragePool | ai.onnx(7+) | averagePool2d | Only supports 4-D input |
GlobalMaxPool | ai.onnx(7+) | maxPool2d | Only supports 4-D input |
GlobalLpPool | ai.onnx(7+) | l2Pool2d | Only supports 4-D input, 'p' value is 2 |
Greater | ai.onnx(7-8, 9-12, 13+) | greater | |
GreaterOrEqual | ai.onnx(12-15, 16+) | greaterOrEqual | |
GroupQueryAttention | com.microsoft(1+) | add, cast, concat, constant, cumulativeSum, div, expand, lesser, matmul, reshape, scatterND, softmax, transpose, where | Only supports input total_sequence_length is constant and past_sequence_length of past kv equals to present_sequence_length of present kv. Does not support cos_cache and sin_cache inputs |
GRU | ai.onnx(7-13, 14-21, 22+) | gru | Only supports 'layout' == 0. 'clip' is not supported. The activation functions in 'activations' must be one of 'Relu', 'Tanh', 'Sigmoid'. Forward and backward activations must be the same if bidirectional. 'sequence_lens' if present should be constant with values equal to the first dimension length of input 'X' |
HardSigmoid | ai.onnx(7+) | hardSigmoid | |
HardSwish | ai.onnx(14+) | hardSwish | |
Identity | ai.onnx(7-13, 14-15, 16-18, 19-20, 21+) | identity | |
InstanceNormalization | ai.onnx(7+) | instanceNormalization | |
LayerNormalization | ai.onnx(7-16, 17+) | layerNormalization | |
LeakyRelu | ai.onnx(7-15, 16+) | leakyRelu | |
Less | ai.onnx(7-8, 9-12, 13+) | lesser | |
LessOrEqual | ai.onnx(12-15, 16+) | lesserOrEqual | |
Log | ai.onnx(7-12, 13+) | log | |
LpPool | ai.onnx(7-10, 11-17, 18+) | l2Pool2d | Only supports 4-D input, 2-D 'kernel_shape', 'p' value is 2 |
LRN | ai.onnx(7-12, 13+) | pad, averagePool2d, transpose, add, mul, pow, div | |
LSTM | ai.onnx(7-13, 14-21, 22+) | lstm | Only supports 'layout' == 0, 'input_forget' == 0. 'clip' is not supported. The activation functions in 'activations' must be one of 'Relu', 'Tanh', 'Sigmoid'. Forward and backward activations must be the same if bidirectional. 'sequence_lens' if present should be constant with values equal to the first dimension length of input 'X' |
MatMul | ai.onnx(7-8, 9-12, 13+) | matmul | |
MatMulNBits | com.microsoft(1+) | add, dequantizeLinear, matmul, reshape, transpose | Inputs 'B' and 'zero_points' (if present) should be constants, input 'g_idx' is not supported, only bits=4 is supported |
Max | ai.onnx(7, 8-11, 12, 13+) | max | |
MaxPool | ai.onnx(7, 8-9, 10, 11, 12+) | maxPool2d | Only supports 4-D input, 2-D 'kernel_shape', 'storage_order' != 1, one output |
Min | ai.onnx(7, 8-11, 12, 13+) | min | |
Mul | ai.onnx(7-12, 13, 14+) | mul | |
Neg | ai.onnx(7-12, 13+) | neg | |
Not | ai.onnx(7+) | logicalNot | |
Or | ai.onnx(7+) | logicalOr | |
Pad | ai.onnx(7-10, 11-12, 13-17, 18, 19-20, 21+) | pad | modes == 'wrap' is not supported |
Pow | ai.onnx(7-11, 12, 13-14, 15+) | pow | |
PRelu | ai.onnx(7-8, 9-15, 16+) | prelu | |
QuantizeLinear | ai.onnx(10-12, 13-18, 19-20, 21-22, 23+) | quantizeLinear | The shape of x_scale should be a subsample of the shape of input |
Reciprocal | ai.onnx(7-12, 13+) | reciprocal | |
ReduceL1 | ai.onnx(7-10, 11-12, 13-17, 18+) | reduceL1 | Input 'axes' if present should be a constant |
ReduceL2 | ai.onnx(7-10, 11-12, 13-17, 18+) | reduceL2 | Input 'axes' if present should be a constant |
ReduceLogSum | ai.onnx(7-10, 11-12, 13-17, 18+) | reduceLogSum | Input 'axes' if present should be a constant |
ReduceLogSumExp | ai.onnx(7-10, 11-12, 13-17, 18+) | reduceLogSumExp | Input 'axes' if present should be a constant |
ReduceMax | ai.onnx(7-10, 11, 12, 13-17, 18-19, 20+) | reduceMax | Input 'axes' if present should be a constant |
ReduceMean | ai.onnx(7-10, 11-12, 13-17, 18+) | reduceMean | Input 'axes' if present should be a constant |
ReduceMin | ai.onnx(7-10, 11, 12, 13-17, 18-19, 20+) | reduceMin | Input 'axes' if present should be a constant |
ReduceProd | ai.onnx(7-10, 11-12, 13-17, 18+) | reduceProduct | Input 'axes' if present should be a constant |
ReduceSum | ai.onnx(7-10, 11-12, 13+) | reduceSum | Input 'axes' if present should be a constant |
ReduceSumSquare | ai.onnx(7-10, 11-12, 13-17, 18+) | reduceSumSquare | Input 'axes' if present should be a constant |
Relu | ai.onnx(7-12, 13, 14+) | relu | |
Reshape | ai.onnx(7-12, 13, 14-18, 19-20, 21+) | reshape | Input 'shape' should be a constant, 0 dimension value in 'shape' is not supported |
Resize | ai.onnx(11-12, 13-17, 18, 19+) | resample2d | Only supports 4-D input, antialias == 0, exclude_outside == 0, keep_aspect_ratio_policy == 'stretch', 'linear' and 'nearest' modes, input 'scales' and 'sizes' if present must be a constant |
RotaryEmbedding | com.microsoft(1+) | add, concat, gather, mul, reshape, split | |
ScatterElements | ai.onnx(11-12, 13-15, 16-17, 18+) | scatterElements | Only supports 'reduction' == 'none' |
ScatterND | ai.onnx(11-12, 13-15, 16-17, 18+) | scatterND | Only supports 'reduction' == 'none' |
Shape | ai.onnx(7-12, 13-14, 15-18, 19-20, 21+) | slice | |
SimplifiedLayerNormalization | ai.onnx(1+) | pow, reduceMean, add, sqrt, div, mul | |
Sigmoid | ai.onnx(7-12, 13+) | sigmoid | |
Sign | ai.onnx(9-12, 13+) | sign | |
SkipSimplifiedLayerNormalization | com.microsoft(1+) | pow, reduceMean, add, sqrt, div, mul | |
Softplus | ai.onnx(7+) | softplus | |
Softsign | ai.onnx(7+) | softsign | |
Sin | ai.onnx(7+) | sin | |
Slice | ai.onnx(7-9, 10, 11-12, 13+) | slice, reverse | Input 'starts', 'ends', 'axes', and 'steps' if present must be a constant |
Softmax | ai.onnx(7-10, 11-12, 13+) | softmax | |
Split | ai.onnx(7-10, 11-12, 13-17, 18+) | split | Input 'split' if present should be a constant |
Sqrt | ai.onnx(7-12, 13+) | sqrt | |
Squeeze | ai.onnx(7-10, 11-12, 13-20, 21+) | reshape | Input 'axes' if present should be a constant |
Sub | ai.onnx(7-12, 13, 14+) | sub | |
Tan | ai.onnx(7+) | tan | |
Tanh | ai.onnx(7-12, 13+) | tanh | |
Tile | ai.onnx(7-12, 13+) | tile | Input 'repeats' should be a constant |
Transpose | ai.onnx(7-12, 13-20, 21+) | transpose | |
Trilu | ai.onnx(14+) | triangular | Input 'k' (option 'diagonal' for WebNN) if present should be a constant |
Unsqueeze | ai.onnx(7-10, 11-12, 13-20, 21+) | reshape | |
Where | ai.onnx(7-8, 9-15, 16+) | where | |
Xor | ai.onnx(7+) | logicalXor |